K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)

=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3

=>x+1=13/11 và y-1=-13/18

=>x=2/11 và y=5/18

a: Khi m=4 thì (1) sẽ là:

x^2-6x-7=0

=>x=7 hoặc x=-1

b: Sửa đề: 2x1+3x2=-11

x1+x2=2m-2

=>2x1+3x2=-11 và 2x1+2x2=4m-4

=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5

x1*x2=-2m+1

=>-24m^2-20m-42m-35+2m-1=0

=>-24m^2-60m-34=0

=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Để pt có 2 nghiệm pb thì:

$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)

Khi đó:

$2x_1^3+(m+2)x_2^2=5$

$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$

$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$

\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)

\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)

\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)

Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.

29 tháng 5 2023

Cho em hỏi làm sao lại chuyển được từ x1(2 - x2)x22 xuống thành x12x22 được vậy ạ?

 

22 tháng 10 2023

1:

\(A=\dfrac{9}{x-\sqrt{x}-2}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9+\left(2\sqrt{x}+5\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9+2x-4\sqrt{x}+5\sqrt{x}-10-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

2:

\(\text{Δ}=\left(-2m-3\right)^2-4m\)

\(=4m^2+12m+9-4m\)

\(=4m^2+5m+9\)

\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{56}{16}\)

\(=\left(2m+\dfrac{5}{4}\right)^2+\dfrac{56}{16}>=\dfrac{56}{16}>0\)

=>Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2=9\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)

=>\(\left(2m+3\right)^2-2m=9\)

=>\(4m^2+12m+9-2m-9=0\)

=>4m^2+10m=0

=>2m(2m+5)=0

=>m=0 hoặc m=-5/2

22 tháng 10 2023

cảm ơn

a: Khi m=-5 thì pt sẽ là x^2-5x-6=0

=>x=6 hoặc x=-1

b:

Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29

Để pt có hai nghiệm thì -4m+29>=0

=>m<=29/4

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>5^2-4(m-1)=9

=>4(m-1)=25-9=16

=>m-1=4

=>m=5(nhận)

c: 2x1-3x2=5 và x1+x2=5

=>x1=4 và x2=1

x1*x2=m-1

=>m-1=4

=>m=5(nhận)