Cho tứ giác abcd,cmr tổng hai đường chéo lớn hơn nửa chứ vi của tứ giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Bài 1:
a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Bài 3:
Gọi O là giao điểm AD và BC.
Ta có nên
Áp dụng định lí Py – ta – go,
Ta có
Nên
Bài 1:
Gọi E là giao điểm của hai đường chéo AC và BD
Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC
(AE + CE) + (BE + DE) > AB + DC
AC + BD > AB + DC
Tương tự ta có AC + BD > AD + BC
Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.
Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)
Theo chứng minh trên ta có:
\(\dfrac{AB+BC+CD+DA}{2}\)< \(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)
Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:
AB + AD > BD
AB + BC > AC
BC + CD > BD
CD + AD > AC
Cộng vế với vế ta có:
(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2
⇒AB + BC + CD + DA > BD + AC (2)
Kết hợp (1) và (2) ta có:
Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
b) Gọi tứ giác cần chứng minh là ABCD, giao điểm hai đường chéo AC và BD là O
Xét ΔABO có AO+OB>AB
Xét ΔCOD có OC+OD>CD
Xét ΔAOD có OA+OD>AD
Xét ΔBOC có OB+OC>BC
Ta có: AC+BD=AO+OB+OC+OD
\(\Leftrightarrow AC+BD>AB+CD\)
Ta có: AC+BD=AO+OD+OB+OC
\(\Leftrightarrow AC+BD>AD+BC\)
mà AC+BD>AB+CD
nên \(2\left(AC+BD\right)>AB+AD+BC+CD\)
\(\Leftrightarrow AC+BD>\dfrac{AB+AD+BC+CD}{2}\)
Xét ΔABD có BD<AB+AD
Xét ΔCBD có BD<BC+CD
Xét ΔABC có AC<AB+BC
Xét ΔADC có AC<AD+DC
Do đó: BD+BD+AC+AC<2(AB+AD+CD+BC)
\(\Leftrightarrow AC+BD< AB+AD+CD+BC\)(2)
Từ (1) và (2) ta suy ra ĐPCM
Gọi chu vi là 2P => nửa chu vi là P
Cho tứ giác ABCD ta có AC< AB + BC (1) ( trong tam giác tổng 2 cạnh lớn hơn cạnh thứ 3)
và AC<AD+DC (2)
Cộng (1) và (2) , ta có:
2AC < AB + BC + AD + DC = 2P => AC<P
chứng minh tương tự ta cũng có BD < P
Vậy ______________
Gọi tứ giác là ABCD có 2 đường chéo là AC; BD
Gọi AC giao BD tại O
TAm giác AOD có OA + OD > AD (1)
tam giác BOC có : OB + OC > BC (2)
tam giác COD có : OC + OD > CD (3)
TAm giác AOB có OB + OA > AB (4)
Từ (1) (2) (3) và (4) => 2 ( OA + OB + OC + OD ) > AB + AC + BC + AD
hay AB + CD > \(\frac{AB+BC+AC+AD}{2}\)
c/m1:
gọi O là giao điểm của 2 đường chéo trong tứ giác , gọi tên của tứ giác đó là tứ giác ABCD:
Trong Δ OAB có :
OA+OB>AB
Trong Δ OBC có :
OB+OC>BC
Trong Δ OAD có :
OD+OA>AD
Trong Δ OCD có :
OC+OD>CD
Ta có 4 bất đẳng thức:
2OB+2OC+2OA+2OD<AB+BC+CD+DA
<=>2BD+2AC>1/2p
<=>BD+AC> 1/2p
Vậy tổng 2 đường chéo trong 1 tứ giác luôn lớn hơn nửa chu vi (đpcm)
p : là nửa chu vi
c/m2:
Vẫn sử dụng tứ giác ABCD
do AC<p và BD<p
<=>AC+BD<2p
vậy tổng 2 đường chéo nhỏ hơn chu vi của tứ giác(đpcm)
Đúng rồi, có sai chỗ: 2OB+2OC+2OA+2OD<AB+BC+CD+DA
chỗ đó dùng dấu > này chứ.
2) -Ta có: MA+MB>AB,MB+MC>BC,MC+MD>CD,MD+MA>AD (Bất đẳng thức tam giác).
2.(MA+MB+MC+MD)>AB+BC+CD+AD
MA+MB+MC+MD>AB+BC+CD+AD/2 (1).
-Ta có: MA+MB+MC+MD=(MA+MC)+(MB+MD)=AC+BD
Mà AC<AB+BC, AC<AD (Bất đẳng thức tam giác).
2AC<AB+BC+CD+AD
Tương tự: 2BD<AB+BC+CD+AD
Do đó: 2AC+2BD<2.(AB+BC+CD+AD)
AC+BD<AB+BC+CD+AD
MA+MB+MC+MA<AB+BC+CD+AD (2)
Từ (1) và (2) AB+BC+CD+AD/2<MA+MB+MC+MA<AB+BC+CD+AD