(3x +1) √(x^3 −7x + 6) = −x^3 −3x^2 + 7x +1
MÌnh cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow x^3+3x^2-7x-1+\left(3x+1\right)\sqrt{x^3-7x+6}=0\)
\(\Leftrightarrow\left(x^3+3x^2-7x-1+\left(3x+1\right)\sqrt{x^3-7x+6}\right)\left(x^3+3x^2-7x-1-\left(3x+1\right)\sqrt{x^3-7x+6}\right)=0\)
\(\Leftrightarrow\left(\left(x^3+3x^2-7x-1\right)^2-\left(3x+1\right)^2\left(x^3-7x+6\right)=0\right)\)
Sau đó em giải tiếp đc r ^^ Phá bình phương rồi đặt nhân tử chung.
\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)
\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)
\(\Leftrightarrow2x^2+5=0\)(vô lý)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)
\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)
Vậy pt vô nghiệm
1) x2 -7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)
2) x2 + 3x + 2 = x2 + 2x + x + 2 = x(x + 2) + (x + 2) = (x + 1)(x + 2)
3) x2 - 7x + 12 = x2 - 3x - 4x + 12 = x(x - 3) - 4(x - 3) = (x - 3)(x - 4)
4) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)
5) 16x - 5x2 - 3 = 15x - 5x2 + x - 3 = -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x)
6) 6x2 + 7x - 3 = 6x2 - 2x + 9x - 3 = 2x(3x - 1) + 3(3x - 1) = (2x + 3)(3x - 1)
7) 3x2 - 3x - 6 = 3x2 - 6x + 3x - 6 = 3x(x - 2) + 3(x - 2) = (x - 2)(3x + 3) = 3(x - 2)(x + 1)
8) 3x2 + 3x - 6 = 3x2 - 3x + 6x - 6 = 3x(x - 1) + 6(x - 1) = (x - 1)(3x + 6) = 3(x - 1)(x + 2)
9) 6x2 - 13x + 6 = 6x2 - 9x - 4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3)
10) 6x2 + 15x + 6 = 6x2 + 12x + 3x + 6 = 6x(x + 2) + 3(x + 2) = (x + 2)(6x + 3) = 3(x + 2)(3x + 1)
11) 6x2 - 20x + 6 = 6x2 - 18x - 2x + 6 = 6x(x -3) - 2(x - 3) = (6x - 2)(x - 3) = 2(3x - 1)(x - 3)
12) 8x2 + 5x - 3 = 8x2 + 8x - 3x - 3 = 8x(x + 1) - 3(x + 1) = (x + 1)(8x - 3)
Câu 1:
Ta có: \(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy: S={1;4}
Câu 2:
Ta có: \(3x^2-7x+3=0\)
\(\Delta=\left(-7\right)^2-4\cdot3\cdot3=49-36=13\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{13}}{6}\\x_2=\dfrac{7+\sqrt{13}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7-\sqrt{13}}{6};\dfrac{7+\sqrt{13}}{6}\right\}\)
Câu 3:
Ta có: \(5x^2-x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{4}{5}\right\}\)
Câu 4:
Ta có: \(7x^2+x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{7}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{8}{7}\right\}\)
Câu 1x^2-5x+4=0
<=>(x-1)(x-4)=0
<=>[x=1;x=4
Câu 2 3x^2-7x+3=0
x=7/6-căn bậc hai(13)/6, x=căn bậc hai(13)/6+7/6
x=7/6-căn bậc hai(13)/6, x=căn bậc hai(13)/6+7/6
Câu 3 5*x^2 -x-4 = 0
x=-4/5, x=1
Câu 4 7*x^2 +x-8 = 0
x=-8/7, x=1
bn ơi mk giải thế có chỗ nào ko hiểu bn có thể hỏi mk nhé
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21