K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)

\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)

\(\Leftrightarrow2x^2+5=0\)(vô lý)

5 tháng 3 2022

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)

\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)

Vậy pt vô nghiệm

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:

a.

 \(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)

\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)

\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)

b.

\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)

\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)

c.

\(\frac{4x^2-3x+5}{x^3-1}\)

\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)

\(-2=\frac{-2(x^3-1)}{x^3-1}\)

 

5 tháng 7 2016

Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn 

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

29 tháng 11 2021

\(=\frac{\left(x+1\right)\left(x+2\right)\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}=\left(x+1\right)\left(x-5\right)=x^2-4x-5\)

27 tháng 9 2021

cảm ơn xong chẳng có ai :)))

31 tháng 10 2021

\(=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

Trl câu nào vậy ạ :(

 

1 tháng 11 2021

Bài 1:

a) \(2x\left(x^2-5x+6\right)=2x^3-10x^2+12x\)

b) \(\left(7x^5+14x^2y^3-28x^3y^2\right):7x^2=x^3+2y^3-4xy^2\)

Bài 2:

\(x^2+y^2+2x-8y+17=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)