Tìm m để hệ phương trình sau có nghiệm suy nhất :
\(\begin{cases}xy+x^2=m\left(y-1\right)\left(1\right)\\xy+y^2=m\left(x-1\right)\left(2\right)\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ (2) suy ra \(\begin{cases}2-y\ge0\\x=\frac{y^2-4y+4}{y}\end{cases}\)
Lúc đó (1) có \(\frac{y^2-4y+4}{y}-y+m=0\Leftrightarrow m=\frac{4y-4}{y}\Leftrightarrow g\left(m\right)=f\left(y\right)\)
Xét hàm số \(f\left(y\right)=\frac{4y-4}{y}\)
- Miền xác định \(D=\left(-\infty;2\right)\)/\(\left\{0\right\}\)
- Đạo hàm \(f'\left(y\right)=\frac{4}{y^2}>0\) Hàm số đồng biến trên D
- Giới hạn
\(\lim\limits_{y\rightarrow-\infty}f\left(y\right)=4\)
\(\lim\limits_{y\rightarrow0^+}f\left(y\right)=-\infty\)
\(\lim\limits_{y\rightarrow0^-}f\left(y\right)=+\infty\)
Bảng biến thiên
x | -\(\infty\) 0 2 |
y' | + // + |
y | 4 +\(\infty\) // -\(\infty\) 2 |
Vậy để hệ có nghiệm : \(m\in\left(-\infty;2\right)\cup\left(4,+\infty\right)\)
\(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)
\(\left(m+1\right)x-y=m+1\left(1\right)\)
\(x+\left(m-1\right)y=2\left(2\right)\)
\(\left(1\right)\Leftrightarrow y=\left(m+1\right)x-\left(m+1\right)\)
\(\Leftrightarrow y=\left(m+1\right)\left(x-1\right)\)
Thế \(y=\left(m+1\right)\left(x-1\right)v\text{à}o\left(2\right)\)
\(x+\left(m-1\right)\left(m+1\right)\left(x-1\right)=2\)
\(\Leftrightarrow x+\left(m^2-1\right)\left(x-1\right)=2\)
\(\Leftrightarrow x+\left(m^2-1\right)x-m^2+1=2\)
\(\Leftrightarrow xm^2=1+m^2\)
\(\Leftrightarrow x=\frac{\left(1+m^2\right)}{m^2}\)
Hệ PT VN \(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy......
\(\begin{cases}3^x-3^y=\left(y-x\right)\left(xy+m\right)\left(1\right)\\x^2+y^2=m\left(2\right)\end{cases}\)
Thay (2) vào (1) ta có : \(3^x-3^y=\left(y-x\right)\left(xy+x^2+y^2\right)\)
\(\Leftrightarrow3^x-3^y=y^3-x^3\)
\(\Leftrightarrow3^x+x^3=3^y+y^3\)
\(\Leftrightarrow f\left(x\right)=f\left(y\right)\)
Xét hàm số \(f\left(t\right)=3'+t^3\)
- Miền xác định D=R
- Đạo hàm \(f'\left(x\right)=\ln3.3'+3t^2>0\) . Hàm đồng biến
Do dó x=y. Thay vào phương trình (2) ta có :
\(x^2+x^2=m\Leftrightarrow2x^2=m\Leftrightarrow x^2=\frac{m}{2}\)
Vậy để hệ có nghiệm : \(m\ge0\)
Hệ tương đương:
\(\hept{\begin{cases}y=m-x\\\left(x-1\right)^2+\left(m-x+1\right)^2=10\end{cases}\Leftrightarrow\hept{\begin{cases}y=m-x\\2x^2-\left(2m+4\right)x+m^2+2m-8=0\left(1\right)\end{cases}}}\)
Hệ có nghiệm <=> PT (1) có nghiệm\(\Leftrightarrow\Delta'\ge0\Leftrightarrow-m^2+20\ge0\Leftrightarrow-2\sqrt{5}\le m\le2\sqrt{5}\)
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
* Điều kiện cần : Giả sử hệ đã cho có nghiệm duy nhất là (x;y), khi đó, dễ thấy (y;x) cũng là nghiệm của hệ. Do tính duy nhất suy ra y = x, thay vào (1) ta có :
\(x^2+x^2=m\left(x-1\right)\Leftrightarrow2x^2-mx+m=0\left(3\right)\)
Vì (3) có nghiệm kép nên \(\Delta=m^2-8m=0\Leftrightarrow\left[\begin{array}{nghiempt}m=0\\m=8\end{array}\right.\)
* Điều kiện đủ :
+ Khi m = 0 hệ phương trình đã cho trở thành
\(\begin{cases}xy+x^2=0\\xy+y^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x\left(y+x\right)=0\\y\left(x+y\right)=0\end{cases}\) (4)
Dễ thấy (1;-1) và (2;-2) là nghiệm (4), vậy m=0 không thỏa mãn đề bài
+)khi m=8 hệ phương trình đã trở thành \(\begin{cases}xy+x^2=8y-8\left(5\right)\\xy+y^2=8x-8\left(6\right)\end{cases}\)
lấy (5) trừ (6) được
\(x^2-y^2=8\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+8\right)=0\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=y\\y=-8-x\end{array}\right.\)
khi y=x thay vào (5) ta được \(2x^2-8x+8=0\Leftrightarrow x=2\Rightarrow y=2\)khi y=-8-x, thay vào (5) ta được
\(x\left(-8-x\right)+x^2=8\left(-8-x\right)-8\Leftrightarrow-8x=-64-8x-8\)(VÔ NGHIỆM
kết luận : Hệ phương trình có nghiệm duy nhất khi và chỉ khi m=8