Tính giá trị của biểu thức :
\(B=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4^{log^3_2}=\left(2^2\right)^{log^3_2}=\left(2^{log^3_2}\right)^2=3^2=9\).
b) \(27^{log^2_9}=\left(3^3\right)^{log^2_{3^2}}=3^{3.\dfrac{1}{2}.log^2_3}=\left(3^{log^2_3}\right)^{\dfrac{3}{2}}=2^{\dfrac{3}{2}}=\sqrt{8}\).
c) \(9^{log^2_{\sqrt{3}}}=9^{log^2_{9^{\dfrac{1}{4}}}}=9^{4.log^2_9}=\left(9^{log^2_9}\right)^4=2^4=16\).
d) \(4^{log^{27}_8}=2^{2.log^{27}_{2^3}}=2^{\dfrac{2}{3}.log^{27}_2}=\left(2^{log^{3^3}_2}\right)^{\dfrac{2}{3}}=\left(3^3\right)^{\dfrac{2}{3}}=3^2=9\).
\(A=\log_3\left(\log_{2\sqrt{2}}\sqrt[3]{\sqrt{2}}\right)=\log_3\left(\log_{2^{\frac{3}{2}}}2^{\frac{1}{6}}\right)=\log_3\left(\frac{1}{6}.\frac{2}{3}\right)=\log_33^{-2}=-2\)
\(a,log_272-\dfrac{1}{2}\left(log_23+log_227\right)\\ =log_272-\dfrac{1}{2}log_2\left(3\cdot27\right)\\ =log_272-log_2\left(81\right)^{\dfrac{1}{2}}\\ =log_272-log_29\\ =log_2\dfrac{72}{9}\\ =log_28\\ =3\)
\(b,5^{log_240-log_25}\\ =5^{log_2\dfrac{40}{5}}\\ =5^{log_28}\\ =5^3\\ =125\)
\(c,3^{2+log_92}\\ =3^{log_9\left(81\cdot2\right)}\\ =3^{\dfrac{1}{2}log_3162}\\ =\left(162\right)^{\dfrac{1}{2}}\\ =\sqrt{162}\\ =9\sqrt{2}\)
\(a;b>0\Rightarrow3a+2b+1>1\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến
Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)
\(\Rightarrow18a^2+1=3a+6a+1\)
\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)
\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)
Ta có :
\(\sqrt{2}=2^{\frac{1}{2}}\)
\(\left(2^3\right)^{\log_{64}\frac{5}{4}}=2^{3\log_{2^6}\frac{5}{4}}=2^{\frac{1}{2}\log_2\frac{5}{4}}=2^{\log_2\sqrt{\frac{5}{4}}}=\sqrt{\frac{5}{4}}=\left(\frac{5}{4}\right)^{\frac{1}{2}}\)
\(2^{3^{\log_92}}=2^{3^{\frac{1}{2}\log_32}}=2^{3^{\log_3\sqrt{2}}}=2^{\sqrt{2}}\)
Mà : \(\sqrt{2}>\frac{\pi}{6}>\frac{1}{2}\Rightarrow2^{\sqrt{2}}>2^{\frac{\pi}{6}}>2^{\frac{1}{2}}\)
\(\Leftrightarrow2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}\) (1)
Mặt khác : \(2>\frac{5}{4}\Rightarrow2^{\frac{1}{2}}>\left(\frac{5}{4}\right)^{\frac{1}{2}}\) hay \(\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\) (2)
Từ (1) và (2) : \(2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\)
Vậy thứ tự giảm dần là :
\(2^{3^{\log_92}};2^{\frac{\pi}{6}};\sqrt{2};\left(2^3\right)^{\log_{64}\frac{5}{4}}\)
a) \(\sqrt[4]{\dfrac{1}{16}}=\dfrac{1}{2}\)
b) \(\left(\sqrt[6]{8}\right)^2=\sqrt[\dfrac{6}{2}]{8}=\sqrt[3]{8}=2\)
c) \(\sqrt[4]{3}\cdot\sqrt[4]{27}=\sqrt[4]{3\cdot27}=\sqrt[4]{81}=3\)
\(P=log_{\dfrac{\sqrt{a}}{b}}a+log_{\dfrac{\sqrt{a}}{b}}\sqrt[3]{b}=log_{\dfrac{\sqrt{a}}{b}}a+\dfrac{1}{3}log_{\dfrac{\sqrt{a}}{b}}b\)
\(=\dfrac{1}{log_a\dfrac{\sqrt{a}}{b}}+\dfrac{1}{3.log_b\dfrac{\sqrt{a}}{b}}=\dfrac{1}{log_a\sqrt{a}-log_ab}+\dfrac{1}{3\left(log_b\sqrt{a}-log_bb\right)}\)
\(=\dfrac{1}{\dfrac{1}{2}-2}+\dfrac{1}{3\left(\dfrac{1}{4}-1\right)}=-\dfrac{10}{9}\)
a) \(2\sqrt{3}-\sqrt{27}+\sqrt{75}\)
\(=2\sqrt{3}-3\sqrt{3}+5\sqrt{3}\)
\(=\sqrt{3}\left(2-3+5\right)\)
\(=4\sqrt{3}\)
b)\(\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\left(1-\sqrt{3}\right)+\left(1+\sqrt{3}\right)\)
\(=2\)
\(F=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)=\log_{3-2\sqrt{2}}\left[\left(3^3\right)^{^{\log_92^2}}+2^{\log_{2^3}3^3}\right]\)
\(=\log_{3-2\sqrt{2}}\left(3^{\frac{3}{2}\log_32}+2^{\log_23}\right)\)
\(=\log_{3-2\sqrt{2}}\left(3^{\log_32^{\frac{3}{2}}}+2^{\log_23}\right)\)
\(=\log_{3-2\sqrt{2}}\left(2^{\frac{3}{2}}+3\right)=\log_{\left(3-2\sqrt{2}\right)^{-1}}\left(3-2\sqrt{2}\right)=-1\)