K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,log_272-\dfrac{1}{2}\left(log_23+log_227\right)\\ =log_272-\dfrac{1}{2}log_2\left(3\cdot27\right)\\ =log_272-log_2\left(81\right)^{\dfrac{1}{2}}\\ =log_272-log_29\\ =log_2\dfrac{72}{9}\\ =log_28\\ =3\)

\(b,5^{log_240-log_25}\\ =5^{log_2\dfrac{40}{5}}\\ =5^{log_28}\\ =5^3\\ =125\)

\(c,3^{2+log_92}\\ =3^{log_9\left(81\cdot2\right)}\\ =3^{\dfrac{1}{2}log_3162}\\ =\left(162\right)^{\dfrac{1}{2}}\\ =\sqrt{162}\\ =9\sqrt{2}\)

NV
12 tháng 1

\(log_216=log_22^4=4\)

\(log_32187=log_33^7=7\)

\(log_{10}\dfrac{1}{100}=log_{10}10^{-2}=-2\)

\(log10000=log10^4=4\)

\(9^{log_312}=3^{2log_312}=3^{log_3144}=144\)

\(8^{log_25}=2^{3log_25}=2^{log_2125}=125\)

\(\left(\dfrac{1}{25}\right)^{log_5\dfrac{1}{3}}=5^{-2log_5\dfrac{1}{3}}=5^{log_59}=9\)

\(\left(\dfrac{1}{4}\right)^{log_23}=2^{-2log_23}=2^{log_2\dfrac{1}{9}}=\dfrac{1}{9}\)

a: \(A=3^{\dfrac{2}{5}}\cdot3^{\dfrac{1}{5}}\cdot3^{\dfrac{1}{5}}=3^{\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{1}{5}}=3^{\dfrac{4}{5}}\)

b: \(B=\left(-27\right)^{\dfrac{1}{3}}=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}=\left(-3\right)^{\dfrac{1}{3}\cdot3}=\left(-3\right)^1=-3\)

c: \(C=\sqrt[3]{-64}\cdot\left(\dfrac{1}{2}\right)^3\)

\(=\sqrt[3]{\left(-4\right)^3}\cdot\dfrac{1}{2^3}=-4\cdot\dfrac{1}{8}=-\dfrac{4}{8}=-\dfrac{1}{2}\)

d: \(D=\left(-27\right)^{\dfrac{1}{3}}\cdot\left(\dfrac{1}{3}\right)^4\)

\(=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}\cdot\dfrac{1}{3^4}\)

\(=\left(-3\right)^{3\cdot\dfrac{1}{3}}\cdot\dfrac{1}{81}=\dfrac{-3}{81}=\dfrac{-1}{27}\)

e: \(E=\left(\sqrt{3}+1\right)^{106}\cdot\left(\sqrt{3}-1\right)^{106}\)

\(=\left[\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\right]^{106}\)

\(=\left(3-1\right)^{106}=2^{106}\)

f: \(F=360^{\sqrt{5}+1}\cdot20^{3-\sqrt{5}}\cdot18^{3-\sqrt{5}}\)

\(=360^{\sqrt{5}+1}\cdot\left(20\cdot18\right)^{3-\sqrt{5}}\)

\(=360^{\sqrt{5}+1}\cdot360^{3-\sqrt{5}}=360^{\sqrt{5}+1+3-\sqrt{5}}=360^4\)

g: \(G=2023^{3+2\sqrt{2}}\cdot2023^{2\sqrt{2}-3}\)

\(=2023^{3+2\sqrt{2}+2\sqrt{2}-3}\)

\(=2023^{4\sqrt{2}}\)

a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)

b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)

c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)

d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)

\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)

\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)

e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)

\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)

\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)

f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)

\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)

\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)

g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)

\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)

\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)

\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)

NV
7 tháng 1

\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)

\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)

\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)

\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)

\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)

\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)

\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)

a: \(A=\dfrac{9^4}{3^2}=\dfrac{\left(3^2\right)^4}{3^2}=\dfrac{3^8}{3^2}=3^6\)=729

b: \(B=81\left(\dfrac{5}{3}\right)^4=81\cdot\dfrac{5^4}{3^4}=\dfrac{81}{3^4}\cdot5^4=5^4=625\)

c: \(C=\left(\dfrac{4}{7}\right)^{-4}\cdot\left(\dfrac{2}{7}\right)^3\)

\(=\left(\dfrac{7}{4}\right)^4\cdot\left(\dfrac{2}{7}\right)^3\)

\(=\dfrac{7^4}{4^4}\cdot\dfrac{2^3}{7^3}\)

\(=\dfrac{2^3}{4^4}\cdot7\)

\(=\dfrac{2^3}{2^8}\cdot7=\dfrac{7}{2^5}=\dfrac{7}{32}\)

d: \(D=7^{-6}\cdot\left(\dfrac{2}{3}\right)^0\left(\dfrac{7}{5}\right)^6\)

\(=7^{-6}\left(\dfrac{7}{5}\right)^6\)

\(=\dfrac{1}{7^6}\cdot\dfrac{7^6}{5^6}=\dfrac{1}{5^6}=\dfrac{1}{15625}\)

e: \(E=8^3:\left(\dfrac{2}{3}\right)^5\cdot\left(\dfrac{1}{3}\right)^2\)

\(=2^6:\dfrac{2^5}{3^5}\cdot\dfrac{1}{3^2}\)

\(=2^6\cdot\dfrac{3^5}{2^5}\cdot\dfrac{1}{3^2}\)

\(=\dfrac{2^6}{2^5}\cdot\dfrac{3^5}{3^2}=3^3\cdot2=54\)

f: \(F=\left(\dfrac{7}{9}\right)^{-2}\cdot\left(\dfrac{1}{\sqrt{3}}\right)^8\)

\(=\left(\dfrac{9}{7}\right)^2\cdot\left(\dfrac{1}{3}\right)^4\)

\(=\dfrac{9^2}{7^2}\cdot\dfrac{1}{3^4}=\dfrac{9^2}{3^4}\cdot\dfrac{1}{7^2}=\dfrac{81}{81}\cdot\dfrac{1}{49}=\dfrac{1}{49}\)

g: \(G=\left(-\dfrac{4}{5}\right)^{-2}\cdot\left(\dfrac{2}{5}\right)^2\cdot\left(\sqrt{2}\right)^3\)

\(=\left(-\dfrac{5}{4}\right)^2\cdot\left(\dfrac{2}{5}\right)^2\cdot2\sqrt{2}\)

\(=\dfrac{25}{16}\cdot\dfrac{4}{25}\cdot2\sqrt{2}=\dfrac{4}{16}\cdot2\sqrt{2}=\dfrac{8\sqrt{2}}{16}=\dfrac{\sqrt{2}}{2}\)

a: \(A=2^{\dfrac{1}{3}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{3}+\dfrac{2}{3}}=2^{\dfrac{3}{3}}=2^1=2\)

b: \(B=36^{\dfrac{3}{2}}=\left(6^2\right)^{\dfrac{3}{2}}=6^{2\cdot\dfrac{3}{2}}=6^3=216\)

c: \(C=36^{\dfrac{3}{2}}\cdot\left(\dfrac{1}{6}\right)^2=\left(6^2\right)^{\dfrac{3}{2}}\cdot\dfrac{1}{6^2}=\dfrac{6^{2\cdot\dfrac{3}{2}}}{6^2}=\dfrac{6^3}{6^2}=6\)

d: \(D=\sqrt{81}\cdot\left(\dfrac{1}{3}\right)^2=9\cdot\dfrac{1}{3^2}=9\cdot\dfrac{1}{9}=1\)

e: \(E=\left(3+2\sqrt{2}\right)^{50}\cdot\left(3-2\sqrt{2}\right)^{50}\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\right]^{50}\)

\(=\left(9-8\right)^{50}=1^{50}=1\)

f: \(F=120^{\sqrt{5}+1}\cdot120^{3-\sqrt{5}}\)

\(=120^{\sqrt{5}+1+3-\sqrt{5}}=120^4\)

g: \(G=\left(3+2\sqrt{2}\right)^{2019}\cdot\left(3\sqrt{2}-4\right)^{2018}\)

\(=\left(3+2\sqrt{2}\right)^{2018}\cdot\left(3\sqrt{2}-4\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3\sqrt{2}-4\right)\right]^{2018}\left(3+2\sqrt{2}\right)\)

\(=\left(9\sqrt{2}-12+12-8\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left(\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)=2^{\dfrac{1}{2}\cdot2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=2^{1009}\cdot\left(3+2\sqrt{2}\right)\)

18 tháng 8 2023

a) \(\left(-5\right)^{-1}=-\dfrac{1}{5}\)

b) \(2^0\cdot\left(\dfrac{1}{2}\right)^{-5}=1\cdot32=32\)

c) \(6^{-2}\cdot\left(\dfrac{1}{3}\right)^{-3}:2^{-2}\)

\(=\dfrac{1}{36}\cdot27:\dfrac{1}{4}\)

\(=\dfrac{27\cdot4}{36}=3\)

18 tháng 8 2023

a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)

b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)

c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)

4 tháng 11 2023

\(sin(\dfrac{\pi}{2}-x)cot(\pi+x)=cosxcotx=\dfrac{cosx}{tanx}\\ =\dfrac{\dfrac{1}{\sqrt5}}{-2}=\dfrac{-\sqrt5}{10}\)