Chung to :1/2 + 1/3 + 1/4 +...+1/9 <2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/3+1/4+...+1/9
A=(1/2+1/3)+(1/4+1/5)+(1/6+1/7)+(1/8+1/9)
A<1/2+1/3+1/4+1/4+1/6+1/6+1/8+1/8
A<5/6+1/2+1/3+1/4
A<23/12<24/12=2
Nên A<2
Vì \(\frac{1}{3^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2002^2}< \frac{1}{2001.2002}\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)
mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)\(=1-\frac{1}{2002}< 1\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}< 1\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)(đpcm)
Nếu mà chỗ 32 ở phân số đầu tiên sửa thành 22 thì trông sẽ đẹp hơn nhé
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 99/100 < 1
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}<1\)
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2