K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2023

Từ GT ta lấy tích phân 2 vế cận từ 0 đến 1 ; sẽ được : 

\(\int\limits^1_0f\left(x+1\right)dx+\int\limits^1_03f\left(3x+2\right)dx-\int\limits^1_04f\left(4x+1\right)dx-\int\limits^1_0f\left(2^x\right)dx=\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}\left(1\right)\)

\(\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}=\int\limits^1_03\left(\sqrt{x+2}-\sqrt{x+1}\right)dx\)  = 

\(2\left[\left(x+2\right)\sqrt{x+2}-\left(x+1\right)\sqrt{x+1}\right]\dfrac{1}{0}\)  = \(2+6\sqrt{3}-8\sqrt{2}\left(2\right)\)

Dễ thấy : \(\int\limits^1_0f\left(x+1\right)dx=\int\limits^2_1f\left(t\right)dt=\int\limits^2_1f\left(x\right)dx\)

\(\int\limits^1_03f\left(3x+2\right)dx=\int\limits^5_2f\left(t\right)dt=\int\limits^5_2f\left(x\right)dx\)  (3)

\(\int\limits^1_04f\left(4x+1\right)=\int\limits^5_1f\left(t\right)dt=\int\limits^5_1f\left(x\right)dx\left(4\right)\)

\(\int\limits^1_0f\left(2^x\right)dx=\int\limits^2_1\dfrac{f\left(t\right)dt}{tln2}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(t\right)dt}{t}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}\)  (5)

Thay (2) ; (3) ; (4) ; (5) vào (1) ta được : 

\(\int\limits^2_1f\left(x\right)dx+\int\limits^5_2f\left(x\right)dx-\int\limits^5_1f\left(x\right)dx-\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=2+6\sqrt{3}-8\sqrt{2}\)

\(\Leftrightarrow\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=\left(2+6\sqrt{3}-8\sqrt{2}\right)ln2\)

4 tháng 3 2020

\(m^2-2m+1+2=\left(m-1\right)^2+2>0\left(\forall m\right)\)

\(x^2\ge0\left(\forall x\right)\)

\(\Rightarrow\left(m^2-2m+3\right)x^2\ge0\)

\(\Rightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)

4 tháng 3 2020

Ta có : \(m^2-2m+3=m^2-2m+1+2\)

\(=\left(m-1\right)^2+2\ge2\) \(\left(Do\left(m-1\right)^2>0\right)\)

Nên khi x > 0 thì hàm số trên đồng biến.

Do \(\sqrt{2}< \sqrt{5}\Leftrightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)

NV
17 tháng 10 2019

Ta có \(\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)

\(\sqrt{3}-\sqrt{2}=\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(\sqrt{2}< \sqrt{3}+\sqrt{2}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\Rightarrow\frac{\sqrt{2}}{2}>\sqrt{3}-\sqrt{2}\)

\(\Rightarrow f\left(\frac{\sqrt{2}}{2}\right)< f\left(\sqrt{3}-\sqrt{2}\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

AH
Akai Haruma
Giáo viên
30 tháng 5 2019

Lời giải:

Ta có: \(f(x)=x^6+2x^3+1=(x^3+1)^2\)

\(\Rightarrow \left\{\begin{matrix} f(\sqrt[3]{3+2\sqrt{2}})=(3+2\sqrt{2}+1)^2=(4+2\sqrt{2})^2\\ f(\sqrt{2})=(2\sqrt{2}+1)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} f(\sqrt[3]{3+2\sqrt{2}})=(4+2\sqrt{2})^2\\ 4f(\sqrt{2})=(4\sqrt{2}+2)^2\end{matrix}\right.\)

\(\Rightarrow f(\sqrt[3]{3+2\sqrt{2}})-4f(\sqrt{2})=(4+2\sqrt{2}-4\sqrt{2}-2)(4+2\sqrt{2}+4\sqrt{2}+2)\)

\(=(2-2\sqrt{2})(6+6\sqrt{2})=12(1-\sqrt{2})(1+\sqrt{2})=-12\)

27 tháng 12 2018

a,\(f\left(\sqrt{a}\right)=\left(\sqrt{a}\right)^2-\sqrt{a}-2=a-\sqrt{a}-2\)

\(\sqrt{f\left(a\right)}=\sqrt{a^2-a-2}\)

\(f\left(a^2\right)=\left(a^2\right)^2-a^2-2=a^4-a^2-2\)

\(\left[f\left(a\right)\right]^2=\left(a^2-a-2\right)^2\)

b,\(f\left(x\right)=x^2-x-2=x^2-2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-2\)

\(f\left(x\right)=\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow GTNN\)của \(f\left(x\right)=\frac{-9}{4}\Leftrightarrow x=\frac{1}{2}\)