\(f\left(\frac{\sqrt{2}}{2}\right)=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

ĐK: \(2x-4\ge0\Rightarrow x\ge2\)

\(\Rightarrow TXĐ:\)D = [2,+\(\infty\))

+ \(A=\frac{y_1-y_2}{x_1-x_2}=\frac{\sqrt{2x_1-4}-\sqrt{2x_2-4}}{x_1-x_2}\)\(=\frac{2\left(x_1-x_2\right)}{\left(x_1-x_2\right).\left(\sqrt{2x_1-4}+\sqrt{2x_2-4}\right)}\)\(=\frac{2}{\sqrt{2x_1-4}+\sqrt{2x_2-4}}\)

Với x = 2 \(\Rightarrow y\) vô no

Với x > 2 \(\Rightarrow A>0\) \(\Rightarrow\) H/s đồng biến

26 tháng 4 2017

\(f\left(-2\right)-f\left(1\right)=\left(-2\right)^2+2+\sqrt{2-\left(-2\right)}-\left(1^2+2+\sqrt{2-1}\right)\) \(=8-4=4\).
\(f\left(-7\right)-g\left(-7\right)=\left(-7\right)^2+2+\sqrt{2-\left(-7\right)}-\left(-2.\left(-7\right)^3-3.\left(-7\right)+5\right)=-658\)

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

24 tháng 9 2016

a) D=R

* Nếu x1;x2 \(\in\) \(\left(-\infty;0\right)\); x1\(\ne\) x2

x1> x2 thì x12+2x1+3 <  x22+2x2+3

 <=>       \(\sqrt{x_1^2+2x_1+3}< \sqrt{x_2^2+2x_2+3}\)

<=>         \(f\left(x_1\right)< f\left(x_2\right)\)

Hàm số nghịch biến

11 tháng 7 2019

a) \(D=(0;+\infty)\backslash\left\{1\right\}\)

b) \(D=[2;+\infty)\)

8 tháng 11 2021

500x600000000000000000000:9870x12345976666=???

27 tháng 7 2019
https://i.imgur.com/jVerIAu.jpg