Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(2x-4\ge0\Rightarrow x\ge2\)
\(\Rightarrow TXĐ:\)D = [2,+\(\infty\))
+ \(A=\frac{y_1-y_2}{x_1-x_2}=\frac{\sqrt{2x_1-4}-\sqrt{2x_2-4}}{x_1-x_2}\)\(=\frac{2\left(x_1-x_2\right)}{\left(x_1-x_2\right).\left(\sqrt{2x_1-4}+\sqrt{2x_2-4}\right)}\)\(=\frac{2}{\sqrt{2x_1-4}+\sqrt{2x_2-4}}\)
Với x = 2 \(\Rightarrow y\) vô no
Với x > 2 \(\Rightarrow A>0\) \(\Rightarrow\) H/s đồng biến
\(f\left(-2\right)-f\left(1\right)=\left(-2\right)^2+2+\sqrt{2-\left(-2\right)}-\left(1^2+2+\sqrt{2-1}\right)\) \(=8-4=4\).
\(f\left(-7\right)-g\left(-7\right)=\left(-7\right)^2+2+\sqrt{2-\left(-7\right)}-\left(-2.\left(-7\right)^3-3.\left(-7\right)+5\right)=-658\)
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)