5x2-3=0
4x3+x=0
giải giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^2+\left(x-3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{2};\dfrac{4}{3}\right\}\)
\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=1\\x+3=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
\(4x^2+4x+1+4x+2-2x^2-x\le0\)
\(\Leftrightarrow2x^2+7x+3\le0\Leftrightarrow\left(2x+1\right)\left(x+3\right)\le0\)
TH1 : \(\left\{{}\begin{matrix}2x+1\ge0\\x+3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-3\end{matrix}\right.\)<=> -1/2 =< x =< -3
TH2 : \(\left\{{}\begin{matrix}2x+1\le0\\x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge-3\end{matrix}\right.\)( vô lí )
\(S=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}=3\)
chọn B
a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)
b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)
d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)
\(\left\{{}\begin{matrix}2x=0\\x^2-4=0\end{matrix}\right.\) ==>\(\left\{{}\begin{matrix}x=0\\x=+,-2\end{matrix}\right.\)
\(5x^2-3=0\Leftrightarrow x^2=\dfrac{3}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{3}{5}}=\pm\dfrac{\sqrt{15}}{5}\)
\(4x^3+x=0\Leftrightarrow x\left(4x^2+1\right)=0\Leftrightarrow x=0;4x^2+1>0\)
\(5x^2-3=0\\ \Leftrightarrow5x^2=3\\ \Leftrightarrow x^2=\dfrac{3}{5}\\\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{3}{5}}\\x=-\sqrt{\dfrac{3}{5}}\end{matrix}\right. \)
vậy \(x=\sqrt{\dfrac{3}{5}}\) ;\(x=-\sqrt{\dfrac{3}{5}}\)
\(4x^3+x=0\\ \Leftrightarrow x\left(4x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{-1}{4}\left(vl\right)\end{matrix}\right.\)
vậy x=0