Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
1/\(x^2+5x+6=0\)
=>\(x^2+2x+3x+6=0\)
=>\(x\left(x+2\right)+3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)
\(a,4x\left(x+1\right)=8\left(x+1\right)\)
\(\Leftrightarrow4x^2+4x-8x-8=0\)
\(\Leftrightarrow4x^2-4x-8=0\)
\(\Leftrightarrow4\left(x^2-x-2\right)=0\)
\(\text{⇔}4\left(x^2-2x+x-2\right)=0\)
\(\text{⇔}4\left(x-2\right)\left(x+1\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(c,2x\left(x-2\right)-\left(2-x\right)^2=0\)
\(\text{⇔}2x\left(x-2\right)-\left(x-2\right)^2=0\)
\(\text{⇔}\left(x-2\right)\left(2x-x+2\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+2\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(d,\left(x-3\right)^3+\left(3-x\right)=0\)
\(\text{⇔}\left(x-3\right)^3-\left(x-3\right)=0\)
\(\text{⇔}\left(x-3\right)\left(x^2-6x+9-1\right)=0\)
\(\text{⇔}\left(x-3\right)\left(x^2-6x+8\right)=0\)
\(\text{⇔}\left(x-3\right)\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=4\end{matrix}\right.\)
\(g,5x\left(x-2000\right)-x+2000=0\)
\(\text{⇔}\left(x-2000\right)\left(5x-1\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=2000\\x=\frac{1}{5}\end{matrix}\right.\)
\(n,\left(x+1\right)^2-1+x=0\)
\(\text{⇔}x^2+2x+1-1+x=0\)
\(\text{⇔}x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
\(k,\left(1-x\right)^2-1+x=0\)
\(\text{⇔}\left(1-x\right)^2-\left(1-x\right)=0\)
\(\text{⇔}\left(1-x\right)\left(1-x-1\right)=0\)
\(\text{⇔}\left(1-x\right).\left(-x\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(m,x+6x^2=0\)
\(\text{⇔}x\left(1+6x\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=0\\x=-\frac{1}{6}\end{matrix}\right.\)
\(h,x^2-4x=0\)
\(\text{⇔}x\left(x-4\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a) \(5x\left(x-3\right)+x-3=0\)
\(\left(5x+1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{5}\\x=3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{-1}{5}\\x=3\end{cases}}\)
câu b) bạn xem kĩ lại đề đi
a, \(x^3-2x=0\Leftrightarrow x\left(x^2-2\right)=0\Leftrightarrow x=;x=\pm\sqrt{2}\)
b, \(x^2\left(x-3\right)+12-4x=0\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=\pm2;x=3\)
c, \(\left(x-2\right)^2=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x^2-2x-4\right)=0\Leftrightarrow\left(x-2\right)\left(-x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+6>0\right)=0\Leftrightarrow x=2\)
d, \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=3\)
e, \(x^3-4x^2+2x-1=0\Leftrightarrow x=3,5...\)
\(5x^2-3=0\Leftrightarrow x^2=\dfrac{3}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{3}{5}}=\pm\dfrac{\sqrt{15}}{5}\)
\(4x^3+x=0\Leftrightarrow x\left(4x^2+1\right)=0\Leftrightarrow x=0;4x^2+1>0\)
\(5x^2-3=0\\ \Leftrightarrow5x^2=3\\ \Leftrightarrow x^2=\dfrac{3}{5}\\\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{3}{5}}\\x=-\sqrt{\dfrac{3}{5}}\end{matrix}\right. \)
vậy \(x=\sqrt{\dfrac{3}{5}}\) ;\(x=-\sqrt{\dfrac{3}{5}}\)
\(4x^3+x=0\\ \Leftrightarrow x\left(4x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{-1}{4}\left(vl\right)\end{matrix}\right.\)
vậy x=0