Giá trị nguyên lớn nhất của thỏa mãn bất phương trình: \(\frac{x+5}{7}-\frac{x}{2}>x-\frac{6+x}{3}\)
là x=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
a) \(=-7\left(x^2-\frac{10}{7}x+\frac{2016}{7}\right)\)
\(=-7\left(x^2-2.\frac{5}{7}x+\frac{25}{49}+\frac{14087}{49}\right)\)
\(=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\)
ta có
\(\left(x-\frac{5}{7}\right)^2\ge0\)với mọi x
\(=>-7\left(x-\frac{5}{7}\right)^2\le0\)(nhân cả hai vế với -7)
\(=>-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)
trường hợp dấu "=" xảy ra khi và chỉ khi
\(\left(x-\frac{5}{7}\right)^2=0\)
\(=>x-\frac{5}{7}=0\)
\(=>x=\frac{5}{7}\)
vậy GTLN cảu biểu thức là \(-\frac{14087}{7}\) khi và chỉ khi x= \(\frac{5}{7}\)
\(\frac{6\left(x+5\right)}{42}\)- \(\frac{21x}{42}\) >\(\frac{42x}{42}\) - \(\frac{14\left(6+x\right)}{42}\) =>\(\frac{6x+30-21x}{42}\) > \(\frac{42x-84-14x}{42}\) =>\(\frac{30-15x}{42}\) - \(\frac{28x-84}{42}\)>0
=>\(\frac{30-15x-28x+84}{42}\) > 0 => x< \(\frac{72}{43}\)