K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

Ta có: (x - y)≥ 0   <=> x2 + y2 – 2xy ≥ 0

                            <=> x2 + y2 – xy ≥ xy

Do x ≥ 0, y ≥ 0        => x + y ≥ 0,

Ta có (x + y)(x2 + y2 – xy) ≥ (x + y)xy <=> x3 + y3 ≥ x2y + xy2

19 tháng 12 2019

Với x ≥ 0; y ≥ 0 thì x + y ≥ 0

Ta có: x3 + y3 ≥ x2y + xy2

⇔ (x3 + y3) – (x2y + xy2) ≥ 0

⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0

⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0

⇔ (x + y)(x2 – 2xy + y2) ≥ 0

⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)

Dấu « = » xảy ra khi (x – y)2 = 0 ⇔ x = y.

9 tháng 8 2021

(x3+x2y+xy2+y3)(x-y)

=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)

=x4+x3y+x2y2+xy3-x3y-x2y2+xy3+y4

= x4+y4

đề sai bạn xem lại đề

9 tháng 8 2021

(x3+x2y+xy2+y3)(x-y)

=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

= x4-y4

1 tháng 6 2019

D   =   ( x 3   +   y 3 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2   –   x y )     =   ( x   +   y ) [ x ( x   –   y )   –   y ( x   –   y ) ]     =   ( x   +   y ) ( x   –   y ) 2

 

Vì x = y ó x – y = 0 nên D   =   ( x   +   y ) ( x   –   y ) 2   =   0

Đáp án cần chọn là: D

5 tháng 6 2021

`a)(x-1)(x^2+x+1)`

`=x^3+x^2+x-x^2-x-1`

`=x^3-1`

`b)(x^3+x^2y+xy^2+y^3)(x-y)`

`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`

`=x^4-y^4`

5 tháng 6 2021

a) VT`=(x-1)(x^2+x+1)`

`=x^3 +x^2 +x -x^2-x-1 `

`=x^3-1=` VP.

b) VT `=(x^3+x^2y+xy^2+y^3)(x-y)`

`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`

`=x^4-y^4=` VP.

17 tháng 9 2019

Ta có

B   =   x 3   +   x 2 y   –   x y 2   –   y 3     =   x 2 ( x   +   y )   –   y 2 ( x   +   y )   =   ( x 2   –   y 2 ) ( x   +   y )     =   ( x   –   y ) ( x   +   y ) ( x   +   y )   =   ( x   –   y ) ( x   +   y ) 2

 

Thay x = 3,25 ; y = 6,57 ta được

B   =   ( 3 , 25   –   6 , 75 ) ( 3 , 25   +   6 , 75 ) 2     =   - 3 , 5 . 10 2   =   - 350

 

Đáp án cần chọn là: B

15 tháng 10 2023

Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)

\(=-x^2+y^2+\left(-x+y\right)-2+3\)

\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)

\(=\left(x-y\right)\left(-x-y-1\right)+1\)

\(=\left(x-y\right)\left(1-1\right)+1=1\)

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)

\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)