phân tích đa thức thành nhân tử:
x4 +2014x2 +2013x +2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\)
Ta có : \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Ta có: \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
x4−2x3+2x−1x4−2x3+2x−1
=x4−x3−x3+x2−x2+x+x−1=x4−x3−x3+x2−x2+x+x−1
=x3(x−1)−x2(x−1)−x(x−1)+(x−1)=x3(x−1)−x2(x−1)−x(x−1)+(x−1)
=(x−1)(x3−x2−x+1)=(x−1)(x3−x2−x+1)
=(x−1)[
\(x^4+2x^3+2x^2+2x+1\\ =\left(x^4+x^3\right)+\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\\ =x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\\ =\left(x^3+x^2+x+1\right)\left(x+1\right)\\ =\left[\left(x^3+x^2\right)+\left(x+1\right)\right]\left(x+1\right)\\ =\left[x^2\left(x+1\right)+\left(x+1\right)\right]\left(x+1\right)\\ =\left(x^2+1\right)\left(x+1\right)^2\)
ta có:
x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)
=(x^2+x+1)(x^2+x+2014)
x4+2014x2+2013x+2014=(x4-x)+(2014x2+2014x+2014)
=x(x-1)(x2+x+1)+2014(x2+x+1)
=(x^2+x+1)(x2-x+2014)
\(x^4+2014x^2+2013x+2014\)
\(=x^4+2014x^2+2014x-x+2014\)
\(=\left(x^4-x\right)+\left(2014x^2+2014x+2014\right)\)
\(=x\left(x^3-1\right)+2014\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2014\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2014\right)\)
b)\(x^8+7x^4+6\)
\(=x^8+x^4+6x^4+6\)
\(=x^4\left(x^4+1\right)+6\left(x^4+1\right)\)
\(=\left(x^4+1\right)\left(x^4+6\right)\)
b) \(x^8+7x^4+16\)
\(=\left(x^8+8x^4+16\right)-x^4\)
\(=\left[\left(x^4\right)^2+2.x^4.4+4^2\right]-x^4\)
\(=\left(x^4+4\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+4-x^2\right)\left(x^4+4+x^2\right)\)
x4+2013x2+2012x+2013= (x4-x)+(2013x2+2013x+2013)
=x(x3-1)+2013(x2+x+1)
=x(x-1)(x2+x+1)+2013(x2+x+1)
=(x2+x+1)(x2-x+2013)
a) 2x² - xy + 4x - 2y
<=> (2x² + 4x)-(xy + 2y)
<=> 2x(x + 2) - y(x + 2)
<=> (x + 2)(2x - y)
b) (a²−a+2012)(a²−a+2014)−3
Đặt a²−a+2012 là x , ta có :
x(x + 2) - 3
<=> x² + 2x - 3
<=> x² + 3x - x - 3
<=> x(x + 3) - (x + 3)
<=> (x +3)(x - 1)
Thay x = a²−a+2012 , ta được :
(a²−a+2015)(a²−a+2011)
x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)
=(x^2+x+1)(x^2+x+2014)
x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)