K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

\(\sqrt{18+6\sqrt{5}}+\sqrt{18-6\sqrt{5}}=\sqrt{\sqrt{15}^2+2\sqrt{45}+\sqrt{3}^2}+\sqrt{\sqrt{15}^2-2\sqrt{45}+\sqrt{3}^2}\)

\(=\sqrt{15}+\sqrt{3}+\sqrt{15}-\sqrt{3}\)

\(=2\sqrt{15}\)

26 tháng 7 2021

2v15 nha

8 tháng 11 2023

a) 2√18 - 4√50 + 3√32

= 6√2 - 20√2 + 12√2

= -2√2

b) √(√8 - 4)² + √8

= 4 - √8 + √8

= 4

c) √(14 - 6√5) + √(6 + 2√5)

= √(3 - √5)² + √(√5 + 1)²

= 3 - √5 + √5 + 1

= 4

8 tháng 11 2023

\(a,2\sqrt{18}-4\sqrt{50}+3\sqrt{32}\\ =6\sqrt{2}-20\sqrt{2}+12\sqrt{2}=-2\sqrt{2}\\ b,\sqrt{\left(\sqrt{8}-4\right)^2}+\sqrt{8}\\ =4-\sqrt{8}+\sqrt{8}\\ =4\\ c,\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\\ =\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}=3+\sqrt{5}+\sqrt{5}+1\\ =4+2\sqrt{5}\)

25 tháng 7 2023

\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\dfrac{3}{7}}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\)

\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}=\dfrac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}=-\dfrac{2\sqrt{6}}{6}\)

`(sqrt 15 - sqrt 6)/(sqrt 35 - sqrt 14)`

`= (sqrt 3 . (sqrt 5 - sqrt 2))/(sqrt 7. (sqrt 5 - sqrt 2))`

`= sqrt3/sqrt 7`

`@ (sqrt 15 - sqrt 5)/(sqrt 3 - 1)`

`= (sqrt 5(sqrt 3 - 1))/(sqrt 3 - 1)`

`= sqrt5`

`@ (2 sqrt 8 - sqrt 12)/(sqrt18 - sqrt 48)`

`= (2(sqrt 8 - sqrt 3)/(sqrt 6(sqrt 3 - sqrt 8))`

`= (-2)/(sqrt 6) = (-2 sqrt 6)/6`

17 tháng 12 2020

1.

a, \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}=6\sqrt{2}-20\sqrt{2}-12\sqrt{2}=-2\sqrt{2}\)

b, \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}+3\right)^2}\)

\(=\left|\sqrt{5}-3\right|+\left|\sqrt{5}+3\right|\)

\(=-\sqrt{5}+3+\sqrt{5}+3=6\)

c, \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}=\dfrac{\sqrt{10}\left(1+\sqrt{10}\right)}{1+\sqrt{10}}-\dfrac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}\)

\(=\sqrt{10}-\sqrt{10}=0\)

2.

ĐK: \(x\in R\)

\(\sqrt{9x^2-30x+25}=5\)

\(\Leftrightarrow\sqrt{\left(3x-5\right)^2}=5\)

\(\Leftrightarrow\left|3x-5\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=5\\3x-5=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=0\end{matrix}\right.\)

Vậy ...

NV
17 tháng 12 2020

Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.

9 tháng 7 2018

a)  \(\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{\left(3\right)^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=3-\sqrt{5}\)

b)  \(\sqrt{46+6\sqrt{5}}=\sqrt{\left(3\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)

9 tháng 7 2018

Giúp mình với !!!

4 tháng 7 2021

a) \(\dfrac{2\sqrt{125}-3\sqrt{5}-\sqrt{180}}{-\sqrt{5}}+\sqrt{8}=\dfrac{2\sqrt{25.5}-3\sqrt{5}-\sqrt{36.5}}{-\sqrt{5}}+\sqrt{8}\)

\(=\dfrac{10\sqrt{5}-3\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=\dfrac{\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=2\sqrt{2}-1\)

b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}\)

\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}=2\sqrt{2}+\sqrt{3}\)

c) \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}=\sqrt{16.3}-2\sqrt{9.\dfrac{1}{3}}+\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}\)

\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}=1+\sqrt{3}\)

d) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

 

10 tháng 7 2018

\(\sqrt{18-6\sqrt{5}}\)

\(=\sqrt{18-2.3\sqrt{5}}\)

\(=\sqrt{18-2\sqrt{45}}\)

\(=\sqrt{\left(\sqrt{15}\right)^2-2\sqrt{45}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{15}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{15}-\sqrt{3}\right|\)

\(=\sqrt{15}-\sqrt{3}\)

23 tháng 6 2019

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

a: Ta có: \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{5}-1\)

\(=\sqrt{3}-1\)

b: Ta có: \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)

\(=3-2\sqrt{2}+3\sqrt{2}+1\)

\(=4+\sqrt{2}\)

c: Ta có: \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)

\(=2\sqrt{2}-2+2\sqrt{2}+1\)

\(=4\sqrt{2}-1\)

22 tháng 8 2021

a)

\(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{1}+1}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}-\sqrt{1}\\ =\sqrt{3}-\sqrt{1}\)

b)

\(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\\ =\sqrt{9-2\sqrt{9}\cdot\sqrt{8}+8}+\sqrt{18+2\sqrt{18}\cdot\sqrt{1}+1}\\ =\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =3-2\sqrt{2}+3\sqrt{2}+1\\ =4+\sqrt{2}\)

c)

\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{8-2\sqrt{8}\cdot\sqrt{4}+4}+\sqrt{8+2\sqrt{8}\cdot\sqrt{1}+1}\\ =\sqrt{\left(2\sqrt{2}-2\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}\\ =2\sqrt{2}-2+2\sqrt{2}+1\\ =4\sqrt{2}-1\)

21 tháng 6 2023

\(E=2\sqrt{3}+3\sqrt{3^3}-\sqrt{100.3}\\ =2\sqrt{3}+9\sqrt{3}-10\sqrt{3}\\ =\left(2+9-10\right)\sqrt{3}=\sqrt{3}\)

\(F=\sqrt{3^2.2}+4\sqrt{18}=\sqrt{18}+4\sqrt{18}=\left(1+4\right)\sqrt{18}=5\sqrt{18}\)

\(G=2\sqrt{3}-4\sqrt{3^3}+5\sqrt{4^2.3}=2\sqrt{3}-12\sqrt{3}+20\sqrt{3}=\left(2-12+20\right)\sqrt{3}=10\sqrt{3}\)

\(H=\left(3\sqrt{25.2}-5\sqrt{9.2}+3\sqrt{2^3}\right)\sqrt{2}\\ =\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\sqrt{2}\\ =6\sqrt{2}.\sqrt{2}=6\)