\(\sqrt{18-6\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(\sqrt{18-6\sqrt{5}}\)

\(=\sqrt{18-2.3\sqrt{5}}\)

\(=\sqrt{18-2\sqrt{45}}\)

\(=\sqrt{\left(\sqrt{15}\right)^2-2\sqrt{45}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{15}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{15}-\sqrt{3}\right|\)

\(=\sqrt{15}-\sqrt{3}\)

9 tháng 7 2018

a)  \(\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{\left(3\right)^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=3-\sqrt{5}\)

b)  \(\sqrt{46+6\sqrt{5}}=\sqrt{\left(3\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)

9 tháng 7 2018

Giúp mình với !!!

23 tháng 6 2019

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

6 tháng 8 2020

con cacacacacacacacacacacacacacacacacacca

@@22@22@22@@222@@2@@2@@@2@2

6 tháng 8 2020

bạn kiểm tra lại đề bài cấu (c)

29 tháng 7 2020

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

16 tháng 7 2017

\(\frac{6-\sqrt{6}}{\sqrt{6}-1}+\frac{6+\sqrt{6}}{\sqrt{6}}\)\(=\frac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\frac{6}{\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{6}}\)\(=\sqrt{6}+\frac{6}{\sqrt{6}}+1\)\(=\sqrt{6}\left(1+\frac{\sqrt{6}}{\sqrt{6}}\right)+1\)\(=\sqrt{6}\left(1+1\right)+1\)\(=\sqrt{6}.2+1\)
\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-I\sqrt{20}-3I}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)\(=\sqrt{\sqrt{5}-I\sqrt{5}-1I}\)\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)\(=\sqrt{1}=1\)