cho a,b>0 thỏa a+b=3 tìm GTNN
B=\(\frac{1}{a}\)+\(\frac{1}{b}\)+
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2$
$\Leftrightarrow B.3\geq 4$
$\Leftrightarrow B\geq \frac{4}{3}$
Vậy $B_{\min}=\frac{4}{3}$
Giá trị này đạt tại $a=b=\frac{3}{2}$
\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)
"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có : \(\frac{a^3}{1+b}+\frac{1+b}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)}{8\left(1+b\right)}}=\frac{3}{2}a\)
\(\frac{b^3}{1+a}+\frac{1+a}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{b^3}{1+a}.\frac{1+a}{4}.\frac{1}{2}}=\frac{3}{2}b\)
Cộng các vế tương ứng lại ta được :
\(\frac{a^3}{1+b}+\frac{b^3}{1+a}+\frac{1}{4}\left(a+b\right)+\frac{3}{2}\ge\frac{3}{2}\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{1+b}+\frac{b^3}{1+a}\ge\frac{5}{4}\left(a+b\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{ab}-\frac{3}{2}=1\)
Do đó \(P\ge1\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
Cho a,b,c>0 thỏa mãn a+b+c=3 Tìm GTNN của
\(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)
Một cách tương ứng khi đó:
\(\Rightarrow P=a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}\)
\(=3+3-\frac{\frac{3^2}{3}+3}{2}=3\)
Đẳng thức xảy ra tại a=b=c=1
sử dụng bđt Cosi ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a-1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
chứng minh tương tự ta cũng được \(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge a+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)
từ (1)(2)(3) => \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)
mặt khác a2+b2+c2>= ab+bc+ca hay 3(ab+bc+ca) =< (a+b+c)2=9
do đó \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)
dấu "=" xảy ra khi a=b=c=1
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
Áp dụng BĐT Cauchy - Shwarz ta có :
\(B=\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{3}\)
Dấu ''='' xảy ra khi \(a=b=\frac{3}{2}\)
Cauchy Schwarz nhé