tim GTLN,GTNN của
A=\(x\sqrt{x}+y\sqrt{y}\)
biết \(\sqrt{x}+\sqrt{y}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(A=x\sqrt{x}+y\sqrt{y}=(\sqrt{x})^3+(\sqrt{y})^3=(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(=x-\sqrt{xy}+y=(\sqrt{x}+\sqrt{y})^2-3\sqrt{xy}\)
\(=1-3\sqrt{xy}\)
Ta thấy \(\sqrt{xy}\geq 0\Rightarrow A=1-3\sqrt{xy}\leq 1\)
Vậy \(A_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
Lại có, theo BĐT Cô-si:
\(1=\sqrt{x}+\sqrt{y}\geq 2\sqrt{\sqrt{x}.\sqrt{y}}=2\sqrt[4]{xy}\)
\(\Rightarrow \sqrt{xy}\leq \frac{1}{4}\)
\(\Rightarrow A=1-3\sqrt{xy}\geq 1-3.\frac{1}{4}=\frac{1}{4}\)
Vậy \(A_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
1/ ĐKXĐ: \(\left|x\right|;\left|y\right|\le1\)
Nếu x;y cùng âm thì vế trái âm (vô lý)
Nếu x;y trái dấu, giả sử \(x>0;y< 0\)
Do \(\left\{{}\begin{matrix}x\le1\\\sqrt{1-x^2}\le1\end{matrix}\right.\) \(\Rightarrow x\sqrt{1-x^2}< 1\)
Mà \(y< 0\Rightarrow y\sqrt{1-y^2}< 0\Rightarrow x\sqrt{1-x^2}+y\sqrt{1-y^2}< 1\) (vô lý)
Vậy x; y không âm
Khi đó áp dụng BĐT Cô-si:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{1}{2}\left(x^2+1-y^2+y^2+1-x^2\right)=1\)
Dấu "=" xảy ra \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\) \(\Rightarrow x^2+y^2=1\)
2/ ĐKXĐ: ...
\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(1-x+1+x\right)}=2\)
\(A_{max}=2\) khi \(1-x=1+x\Leftrightarrow x=0\)
Đk: \(x\ge2;y\ge-1;0< x+y\le9\)
Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)
Từ giả thiết suy ra
\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)
Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:
\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)
\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)
Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)
Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)
\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)
\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))
\(P_{max}=6\) khi \(x=y=3\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)
\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)
\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))
\(\Rightarrow x+y\ge4\)
\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị
Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)
\(\Leftrightarrow\) P = x + y = \(\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)
Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:
\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24
\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0
\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\) -4 \(\le\) P \(\le\) 6
Vậy ...
Chúc bn học tốt!
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
Câu 1:
\(y^2+yz+z^2=1-\frac{3x^2}{2}\)
\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)
\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)
\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)
\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)
\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)
Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)
\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)
Câu 2:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Câu 3:
\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )
\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng BĐT Cauchy:
\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)
\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
Câu 4:
Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)
\(M=a^2-2ab+3b^2-2a+1\)
\(M=a^2-a\left(2b+2\right)+3b^2+1\)
\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)
\(=-8b^2+8b\)
\(=-8b\left(b+1\right)\ge0\)
Vì \(b\ge0\) nên \(-8b\left(b+1\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow b=0\)
Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=1\)
Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Đk: x \(\ge\)0; y \(\ge\)0
Ta có: \(A=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
\(A=\left(\sqrt{x}+\sqrt{y}\right)^3-3\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
Với \(\sqrt{x}+\sqrt{y}=1\) => \(A=1^3-3\sqrt{xy}.1=1-3\sqrt{xy}\) (1)
Do \(\sqrt{xy}\le\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\)(bđt cosi ) => \(1-3\sqrt{xy}\ge1-3\cdot\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{x}=\sqrt{y}\\\sqrt{x}+\sqrt{y}=1\end{cases}}\) <=> \(x=y=\frac{1}{4}\)
Vậy MinA = 1/4 <=> x = y = 1/4
Lại có: \(\sqrt{x}+\sqrt{y}=1\) => \(\sqrt{y}=1-\sqrt{x}\le1\) => \(\sqrt{y}-1\le0\)
=> \(\sqrt{x}=1-\sqrt{y}\le1\) ==> \(\sqrt{x}-1\le0\)
=> \(\left(\sqrt{x}-1\right)\left(\sqrt{y}-1\right)\ge0\) <=> \(xy-\left(\sqrt{x}+\sqrt{y}\right)+1\ge0\)
<=> \(xy-1+1\ge0\) <=> \(xy\ge0\) <=> \(\sqrt{xy}\ge\)0
Do đó: \(A=1-3\sqrt{xy}\le1-3.0=1\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}xy=0\\\sqrt{x}+\sqrt{y}=1\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=1\end{cases}}\) hoặc \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy MaxA = 1 <=> \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)