tìm x, biết :
a) (2x + 3)2 = \(\frac{9}{121}\)
b) (3x - 1)3 = -\(\frac{8}{27}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2x+3\right)^2=\frac{3^2}{11^2}\)
từ đó suy ra
\(2x+3=\frac{3}{11}\)
2x=3/11-3
2x=-2/8/11
x=-2/8/11:2
x=-1/4/11
b,
(3x-1)^3=-8/27
(3x-1)^3=(-2/3)^3
Vậy suy ra
3x-1=-2/3
3x=-2/3+1
3x=1/3
x=1/3:3
x=1/9
a) \(\left(2x+3\right)^2=\frac{9}{121}\)
Ta có: \(\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)
\(\Rightarrow2x+3\in\left\{\frac{3}{11};\frac{-3}{11}\right\}\)
\(\Rightarrow x\in\left\{\frac{-15}{11};\frac{-18}{11}\right\}\)
Vậy \(x\in\left\{\frac{-15}{11};\frac{-18}{11}\right\}\)
b) \(\left(3x-1\right)^3=\frac{-8}{27}\)
Ta có: \(\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Rightarrow3x-1=\frac{-2}{3}\)
\(\Rightarrow x=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}\)
a.
\(\left(2x+3\right)^2=\frac{9}{121}\)
\(\left(2x+3\right)^2=\left(\pm\frac{3}{11}\right)^2\)
\(2x+3=\pm\frac{3}{11}\)
TH1:
\(2x+3=\frac{3}{11}\)
\(2x=\frac{3}{11}-3\)
\(2x=-\frac{30}{11}\)
\(x=-\frac{30}{11}\div2\)
\(x=-\frac{15}{11}\)
TH2:
\(2x+3=-\frac{3}{11}\)
\(2x=-\frac{3}{11}-3\)
\(2x=-\frac{36}{11}\)
\(x=-\frac{36}{11}\div2\)
\(x=-\frac{18}{11}\)
Vậy \(x=-\frac{15}{11}\) hoặc \(x=-\frac{18}{11}\)
b.
\(\left(3x-1\right)^3=-\frac{8}{27}\)
\(\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)
\(3x-1=-\frac{2}{3}\)
\(3x=-\frac{2}{3}+1\)
\(3x=\frac{1}{3}\)
\(x=\frac{1}{3}\div3\)
\(x=\frac{1}{9}\)
Chúc bạn học tốt ^^
a)\(\left(2x+3\right)^2=\frac{9}{121}\\ \Leftrightarrow\left(2x+3\right)^2=\left(\pm\frac{3}{11}\right)^2\\ \Rightarrow\left\{{}\begin{matrix}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{-15}{11}\\x=\frac{-18}{11}\end{matrix}\right.\)
Vậy...
b)\(\left(3x-1\right)^3=\frac{-8}{27}\\ \Leftrightarrow\left(3x-1\right)^3=\left(\frac{-2}{3}\right)^3\\ 3x-1=\frac{-2}{3}\\ \Rightarrow x=\frac{1}{9}\)
Vậy...
a) \(\left(2x+3\right)^2=\frac{9}{121}\)
\(\Rightarrow2x+3=\pm\frac{3}{11}\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\frac{3}{11}-3=-\frac{30}{11}\\2x=\left(-\frac{3}{11}\right)-3=-\frac{36}{11}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\left(-\frac{30}{11}\right):2\\x=\left(-\frac{36}{11}\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{15}{11};-\frac{18}{11}\right\}.\)
b) \(\left(3x-1\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-1=-\frac{2}{3}\)
\(\Rightarrow3x=\left(-\frac{2}{3}\right)+1\)
\(\Rightarrow3x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}:3\)
\(\Rightarrow x=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}.\)
Chúc bạn học tốt!
biết giải bài 2
x/12=y/14=x.y/12.24=98/288=49/144
=> x/12=49/144=> 49/12
=> y/14=49/144=> 343/72
mới lớp 2 thôi
Bài 1 : \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
Bài 2 : a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)=> \(x^8=x^7\)
=> \(x^8-x^7=0\)
=> \(x^7\left(x-1\right)=0\)
=> \(x-1=0\Rightarrow x=1\)(vì x7 = 0 => x = 0 mà x \(\ne\)0 nên loại)
b) \(x^{10}-25x^8=0\)
=> \(x^8\left(x^2-25\right)=0\)
=> x8 = 0 hoặc x2 - 25 = 0
=> x = 0 hoặc x2 = 25
=> x = 0 hoặc x = \(\pm\)5
Bài 3 : a) \(\left(2x+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)
=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)
b) \(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)
=> 3x - 1 = -2/3
=> 3x = 1/3
=> x = 1/3 : 3 = 1/9
1) Ta có \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{30}+1\right)}=2^{10}=1024\)
2) a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
=> x8 = x7
=> x8 - x7 = 0
=> x7(x - 1) = 0
=> \(\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy x \(\in\left\{0;1\right\}\)
b) x10 = 25x8
=> x10 - 25x8 = 0
=> x8(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^8=0\\x^2-25=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy \(x\in\left\{0;5;-5\right\}\)
3) \(\left(2x+3\right)^2=\frac{9}{121}\)
=> \(\left(2x+3\right)^2=\left(\frac{3}{11}\right)^2\)
=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{-30}{11}\\2x=-\frac{36}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)
Vậy \(x\in\left\{-\frac{15}{11};-\frac{18}{11}\right\}\)
b) \(\left(3x-1\right)^3=-\frac{8}{27}\)
=> \(\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)
=> \(3x-1=-\frac{2}{3}\)
=> \(3x=\frac{1}{3}\)
=> \(x=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}\)
a) \(\left(2x+3\right)^2=\frac{9}{21}\)
<=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\frac{4}{11}\\x=-1\frac{7}{11}\end{cases}}\)
Vậy...
a) (2x + 3)2 = 9/121
Ta có: 9/121 = (3/11)2 = (-3/11)2
=> 2x + 3 thuộc {3/11; -3/11}
=> x thuộc {-15/11; -18/11}
b) (3x - 1)3 = -8/27 = (-2/3)3
=> 3x - 1 = -2/3
=> x = 1/9
\(\left(2x+3\right)^2=\frac{9}{121}\)
\(\Rightarrow\left(2x+3\right)^2=\hept{\begin{cases}\left(\frac{3}{11}\right)^2\\\left(\frac{-3}{-11}\right)^2\end{cases}}\)
\(\Rightarrow2x+3=\hept{\begin{cases}\frac{3}{11}\\\frac{-3}{-11}\end{cases}}\)