Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Leftrightarrow5x-5=4x+8\)
\(\Leftrightarrow5x-4x=8+5\)
\(\Leftrightarrow x=13\)
b)Ta có:
\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)
c)Ta có:
\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)
d)Ta có:
\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:
\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)
\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 1 và Bài 2 dễ, bn có thể tự làm được!
Bài 3:
a) ta có: 1020 = (102)10 = 10010
=> 10010>910
=> 1020>910
b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)
(-3)50 = 350 = (35)10= 24310
=> 12510 < 24310
=> (-5)30 < (-3)50
c) ta có: 648 = (26)8= 248
1612 = ( 24)12 = 248
=> 648 = 1612
d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)
\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Leftrightarrow3x-1=3\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
b) Đề sai ! Sửa :
\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)
\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)
\(\Leftrightarrow2x+5=4\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)
\(\Leftrightarrow x+3=\frac{4}{3}\)
\(\Leftrightarrow x=-\frac{5}{3}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)
\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{4}{15}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
\(a,\left(x+1\right)^2=81\)
\(\left(x+1\right)^2=9^2\) Hoặc \(\left(x+1\right)^2=\left(-9\right)^2\)
\(\left(x+1\right)=9\) \(x+1=-9\)
\(x=8\) \(x=-10\)
b,\(\left(x+5\right)^{^{ }3}=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(x+5=-4\)
=> \(x=-9\)
c,\(\left(2x-3\right)^2=9\)
=>\(\left(2x-3\right)^2=3^2\)Hoặc \(\left(2x-3\right)^2=\left(-3\right)^2\)
\(2x-3=3\) \(2x-3=-3\)
\(2x=6\) \(2x=0\)
=> \(\hept{\begin{cases}x=3\\x=0\end{cases}}\)
d, \(\left(4x+1\right)^3=27\)
\(\left(4x+1\right)^{^{ }3}=3^3\)
\(4x+1=3\)
\(4x=2\)
\(x=\frac{1}{2}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{8^6}{4}=\frac{\left(2^3\right)^6}{2^2}=\frac{2^{18}}{2^2}=2^{16}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{15}+4^{10}}{4^6+4^{11}}=\frac{4^{10}.4^5+4^{10}}{4^6+4^6.4^5}=\frac{4^{10}.\left(4^5+1\right)}{4^6.\left(4^5+1\right)}=\frac{4^{10}}{4^6}=4^4=256\)
phần D trên mk làm sai xin lỗi nha
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
e)
\(\left(x+3\right)^3=\left(x+3\right)^5\)
\(\Rightarrow\)\(x+3=1;0\)
TH1: TH2
\(x+3=0\) \(x+3=1\)
\(x=-3\) \(x=-2\)
\(x\in\left\{-3;-2\right\}\)
Bài 1:
\(4.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)
\(=4.\frac{1}{4}-2.\frac{1}{4}+3.\left(\frac{-1}{2}\right)+1\)
\(=1-\frac{1}{2}-\frac{3}{2}+1\)
\(=0\)
Bài 2:
a) \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow259-39=3x+7x\)
\(\Rightarrow220=10x\)
\(\Rightarrow x=22\)
d) \(\frac{3^2.3^8}{27^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)
\(\frac{\Rightarrow3^{10}}{3^9}=3^x\)
\(\Rightarrow3=3^x\)
\(\Rightarrow x=1\)
Hok tốt nha^^
Bài 1 : \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
Bài 2 : a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)=> \(x^8=x^7\)
=> \(x^8-x^7=0\)
=> \(x^7\left(x-1\right)=0\)
=> \(x-1=0\Rightarrow x=1\)(vì x7 = 0 => x = 0 mà x \(\ne\)0 nên loại)
b) \(x^{10}-25x^8=0\)
=> \(x^8\left(x^2-25\right)=0\)
=> x8 = 0 hoặc x2 - 25 = 0
=> x = 0 hoặc x2 = 25
=> x = 0 hoặc x = \(\pm\)5
Bài 3 : a) \(\left(2x+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)
=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)
b) \(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)
=> 3x - 1 = -2/3
=> 3x = 1/3
=> x = 1/3 : 3 = 1/9
1) Ta có \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{30}+1\right)}=2^{10}=1024\)
2) a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
=> x8 = x7
=> x8 - x7 = 0
=> x7(x - 1) = 0
=> \(\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy x \(\in\left\{0;1\right\}\)
b) x10 = 25x8
=> x10 - 25x8 = 0
=> x8(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^8=0\\x^2-25=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy \(x\in\left\{0;5;-5\right\}\)
3) \(\left(2x+3\right)^2=\frac{9}{121}\)
=> \(\left(2x+3\right)^2=\left(\frac{3}{11}\right)^2\)
=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{-30}{11}\\2x=-\frac{36}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)
Vậy \(x\in\left\{-\frac{15}{11};-\frac{18}{11}\right\}\)
b) \(\left(3x-1\right)^3=-\frac{8}{27}\)
=> \(\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)
=> \(3x-1=-\frac{2}{3}\)
=> \(3x=\frac{1}{3}\)
=> \(x=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}\)