Tìm gtnn của bt:B=|1-x|+|2x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = x2 - 2ax + a2 + x2 - 2bx + b2 + x2 - 2cx + c2
= 3x2 - 2(a + b + c)x + a2 + b2 + c2
= 3\(\left(x-\frac{a+b+c}{3}\right)^2\)- \(\frac{\left(a+b+c\right)^2}{3}\) + a2 + b2 + c2
B đạt min khi x = \(\frac{a+b+c}{3}\)
Thay x = \(\frac{a+b+c}{3}\)vào B
MinB = \(\left(\frac{a+b+c-3a}{3}\right)^2\)+ \(\left(\frac{a+b+c-3b}{3}\right)^2\) + \(\left(\frac{a+b+c-3c}{3}\right)^2\)
= \(\left(\frac{b+c-2a}{3}\right)^2\)+ \(\left(\frac{a+c-2b}{3}\right)^2\) + \(\left(\frac{a+b-2c}{3}\right)^2\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
\(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow x^2+2x+3\ge2\)
Dấu = khi x=-1
\(P-8=\dfrac{x^2-6x+9}{x-1}=\dfrac{\left(x-3\right)^2}{x-1}\ge0\) (Do x > 1 và \(\left(x-3\right)^2\ge0\forall x\in R\)).
Do đó \(P\ge8\). Dấu "=" xảy ra khi x = 3.