K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

Ta có: \(n\left(n-1\right)=n^2-n< n^2\Rightarrow\dfrac{1}{n\left(n-1\right)}>\dfrac{1}{n^2}\)

\(n\left(n+1\right)=n^2+n>n^2\Rightarrow\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}\)

Từ đó:

\(\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{n-\left(n-1\right)}{n\left(n-1\right)}=\dfrac{1}{n\left(n-1\right)}>\dfrac{1}{n^2}\) (1)

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}\) (2)

(1);(2) \(\Rightarrow\dfrac{1}{n-1}-\dfrac{1}{n}>\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)

14 tháng 6 2017

Câu hỏi của Cường Hoàng - Toán lớp 9 | Học trực tuyến

14 tháng 6 2017

Áp dụng : \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n-1}}+...+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{2}}+1>2\left(\sqrt{n+1}-\sqrt{n}\right)+2\left(\sqrt{n}-\sqrt{n-1}\right)+...+2\left(\sqrt{4}-\sqrt{3}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+2\left(\sqrt{2}-1\right).\)

\(=2\left(\sqrt{n+1}-1\right).\)

NV
30 tháng 6 2021

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

18 tháng 12 2021

a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)