Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+......................+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(A.\dfrac{5}{3}=\dfrac{5}{9.14}+\dfrac{5}{14.19}+..................+\dfrac{5}{\left(5n-1\right)\left(5n+1\right)}\)
\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+..................+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)
\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{5n+4}\)
\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{3}{5}\)
\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+\text{4}}\right).\dfrac{3}{5}\)
\(A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)
\(A=\dfrac{1}{15}-\dfrac{1}{5.\left(5n+4\right)}\)
\(\Rightarrow A< \dfrac{1}{15}\)
\(\Rightarrowđpcm\)
Chúc bn học tốt!!!!!!!!!!
Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)
\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\)
⇒5A=15+252+...+11511⇒5A=15+252+...+11511
⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512
⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512
⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511
⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)
⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1
⇒A<116⇒A<116
kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..........................
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)
\(\Leftrightarrow A< 1\)
Vậy ......
a,Vế trái:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)
b,chưa có câu trả lời, sorry nha
Ta có :
\(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+.............+\dfrac{n}{5^{n+1}}+.....+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{3^3}+........+\dfrac{n}{5^n}+..........+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+.....+\dfrac{n}{5^n}+....+\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5^2}+\dfrac{2}{5^3}+.....+\dfrac{n}{5^{n+1}}+........+\dfrac{11}{5^{12}}\right)\)\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+.........+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+.......+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\rightarrowđpcm\)
a) Giải
Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)
\(\Rightarrow A< A.M\)
hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)
\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)
\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)
Vậy \(A< \dfrac{1}{10}\)
Mấy bài dễ u tự giải quyết nha
3) \(\dfrac{2013}{2014}+\dfrac{2014}{2015}+\dfrac{2015}{2013}\)
\(=\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)+\left(1+\dfrac{2}{2013}\right)\)
\(=3+\dfrac{2}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\)
\(=3+\left(\dfrac{1}{2013}-\dfrac{1}{2014}\right)+\left(\dfrac{1}{2013}-\dfrac{1}{2015}\right)>3\)