Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)
+)Đặt A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\left(1+1+1+...+1\right)\) (99 chữ số 1)
A= \(\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
A= \(\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+1\)
A= \(100.\left(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
⇒ M= \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
M= \(\dfrac{100.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
M= 100 (1)
+) Đặt B= \(92-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\)
B= \(\left(1+1+1+...+1\right)-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\) ( 92 chữ số 1)
B= \(\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
B= \(\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
B= \(8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
⇒ N= \(\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)
N= 8 (2)
Từ (1) và (2)⇒ \(\dfrac{M}{N}\) = \(\dfrac{100}{8}\)= \(\dfrac{25}{2}\)
Vậy \(\dfrac{M}{N}=\dfrac{25}{2}\)
a: \(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{10}-\dfrac{3}{202}=\dfrac{150}{101}\)
b:
a, Ta có: \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{n.\left(n+4\right)}=\dfrac{1}{4}.\dfrac{4}{n.\left(n+1\right)}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
Vậy \(\dfrac{1}{n}.\dfrac{1}{n+1}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
b, \(A=\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}=4.\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{95.99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)=4.\dfrac{32}{99}=\dfrac{128}{99}\)
Vậy \(A=\dfrac{128}{99}\)
mọi người thật là nhẫn tâm
chẳng ai giúp mk
TRỜI ƠI!!! AI MS LÀ BN BÈ THỰC SỰ
Ko cs đứa mô trả lời chứ chi
Loại bn bè vs mấy ng chỉ là giả tạo thôi
a) Vì \(\dfrac{x+5}{3}\)= \(\dfrac{x-6}{7}\) nên 7(x+5) = 3(x-6)
=> 7x+ 35 = 3x - 18
7x - 3x = -18 -35
4x = -53
x = -53:4
x = \(\dfrac{-53}{4}\)
b)B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
B<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
B<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
B<\(1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)-\dfrac{1}{9}\)
B<1-\(\dfrac{1}{9}\)
B<\(\dfrac{8}{9}\)(1)
ta có:
B>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
B>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{10}\)
B>\(\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{9}+\dfrac{1}{9}\right)-\dfrac{1}{10}\)
B>\(\dfrac{1}{2}-\dfrac{1}{10}\)
B>\(\dfrac{2}{5}\)
Help me!!!
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra