bài 1: CMR a,b,c>= 0 thì a3+b3+c3>=3abc
các bạn ơi giúp mình khó wa đi a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
a: Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a+b+c=0\)
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Áp dụng BĐT cô si với ba số không âm ta có :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3\sqrt[3]{\left(abc\right)^3}=3abc\)
=> ĐPCM
Cách khác dễ hiểu hơn
Áp dụng BĐT Cô si 2 số ko âm
Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)
Tương tự rồi sau đó lại có:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT Cô si với 3 số k âm
\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)
\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)
\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)
\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Với a,b >0.Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi a=b
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Lắm bạn hỏi câu này quá mình giải 1 câu sau các bạn vào câu hỏi tương tự nha
Xét Hiệu : a^3 + b^3 + c^3 - 3abc
= ( a + b )^3 - 3ab(a+b) - 3abc + c^3
= ( a + b + c )^3 - 3 ( a+ b ).c ( a + b + c ) - 3ab ( a + b+ c )
= ( a + b + c )^3 - 3(a+b+c)( ac+ bc + ab )
= ( a+ b+ c )[ ( a + b + c )^2 - 3ab - 3ac - 3bc )
= ( a+ b + c )( a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab )
=(a+ b+ c )( a^2 + b^2 + c^2 - ab - bc - ac )
= 2 ( a + b +c )(2a^2 + 2b^2 + 2c^2 - 2ab- 2bc- 2ac )
= 2 (a+b+c) [ a^2 - 2ab + b^2 + c^2 - 2bc + b^2 + a^2 - 2ac + c^2 )]
= 2 ( a+ b + c )[ ( a - b)^2 + ( c- b)^2 + ( c -a )^2 ] >=0 vì :
a ; b; c >0 => a+ b+ c >= 0
( a- b)^2 >=0
( b- c )^2 >=0
( c-a )^2 >=0
=> ( a -b )^2 + ( b- c)^2 + ( c- a)^2 >=0
=> a^3 +b^3 + c^3 - 3abc >=0
=> a^3 + b^3 + c^3 >= 3abc => ĐPCM