Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
a: Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a+b+c=0\)
Bài 1:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow [(a+b)^3+c^3]-[3ab(a+b)+3abc]=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$
Xét TH $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$
Vậy $a^3+b^3+c^3=3abc$ khi $a+b+c=0$ hoặc $a=b=c$
Áp dụng vào bài:
Nếu $a+b+c=0$
$A=\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$
$P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2+2+2=6$
1) 52005 +52003 = 52003(52+1)=52003(25+1) = 52003.26
Mà 26 chia hết cho 13 => ...
2)a2 + b2 + 1 ≥ ab + a + b <=> 2a2+2b2+2 ≥ 2ab + 2a +2b (*nhân cả hai vế với 2*)
<=> 2a2-2ab+2b2 +2 -2a -2b ≥0 (*chuyển vế phải sang vế trái và đổi dấu*)
<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)≥0
<=> (a-b)2+(a-1)2+(b-1)2≥0
=> Bất đẳng thức đúng
=> đpcm
3) Ta có a+b+c=0
<=> a+b = -c
<=> (a+b)3=(-c)3
<=> a3+3a2b+3ab2+b3= -c3
<=> a3+b3+c3= -3a2b -3ab2 (*chuyển vế*)
<=> a3+b3+c3= -3ab(a+b) = -3ab(-c)=3abc (*do a+b = -c*)
Với a,b >0.Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi a=b
Ta có:
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)
\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))
\(=3\left(c+d\right)\left(ab-cd\right)\)
Vậy đẳng thức được chứng minh.
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Áp dụng BĐT cô si với ba số không âm ta có :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3\sqrt[3]{\left(abc\right)^3}=3abc\)
=> ĐPCM
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Lắm bạn hỏi câu này quá mình giải 1 câu sau các bạn vào câu hỏi tương tự nha
Xét Hiệu : a^3 + b^3 + c^3 - 3abc
= ( a + b )^3 - 3ab(a+b) - 3abc + c^3
= ( a + b + c )^3 - 3 ( a+ b ).c ( a + b + c ) - 3ab ( a + b+ c )
= ( a + b + c )^3 - 3(a+b+c)( ac+ bc + ab )
= ( a+ b+ c )[ ( a + b + c )^2 - 3ab - 3ac - 3bc )
= ( a+ b + c )( a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab )
=(a+ b+ c )( a^2 + b^2 + c^2 - ab - bc - ac )
= 2 ( a + b +c )(2a^2 + 2b^2 + 2c^2 - 2ab- 2bc- 2ac )
= 2 (a+b+c) [ a^2 - 2ab + b^2 + c^2 - 2bc + b^2 + a^2 - 2ac + c^2 )]
= 2 ( a+ b + c )[ ( a - b)^2 + ( c- b)^2 + ( c -a )^2 ] >=0 vì :
a ; b; c >0 => a+ b+ c >= 0
( a- b)^2 >=0
( b- c )^2 >=0
( c-a )^2 >=0
=> ( a -b )^2 + ( b- c)^2 + ( c- a)^2 >=0
=> a^3 +b^3 + c^3 - 3abc >=0
=> a^3 + b^3 + c^3 >= 3abc => ĐPCM