cho a,b là hai số lẽ không chia hết cho 3.CMR a2-b2 : hết 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
Đặt a = 4x + 1 và b = 4y + điều kiện b ≥ a .
Biểu diễn b 2 – a 2 = 8 ( 2 y 2 + 3 y – 2 x 2 – x + 1 ) .
Bài này lớp 6 mà bạn
Đặt c1=a1-b1, ... , c5=a5-b5.
Có c1+ c2 + ...+ c5
= (a1-b1)+(a2-b2)+...+(a5-b5)
= (a1+a2+...+a5)-(b1+b2+...+b5)
=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)
=> Trong 5 số c1,...,c5 có một số chẵn vì từ c1 đến c5 có 5 số
=> Trong các số a1-b1,...,a2-b2 có một số chẵn
Vậy ... (đpcm)
Vì a,b là 2 số lẻ không chia hết cho 3 nên a, b thuộc dạng : 3k+1hoặc 3k+2 (k thuộc Z)
Ta xét: (3k+1)2= 9k2+6k+1 chia 3 dư 1
(3k+2)2=9k2+12k +3+1 chia 3 dư 1
Vì vậy, a2 và b2 đều chia 3 dư 1 => a2-b2 chia hết cho 3 (1)
Lại có: a2 -b2 = a2-1-(b2-1) = (a-1)(a+1)- (b-1)(b+1)
Vì a, b là 2 số lẻ nên a-1,a+1,b-1,b+1 đều là số chẵn mà tích của 2 số chẵn chia hết cho 8 nên (a-1)(a+1)-(b-1)(b+1) chia hết cho 8.(2)
Vậy từ (1) và (2) và (3,8)=1 ta suy ra: a2-b2 chia hết cho 24.
***********************(nếu không biết tại sao 2 số chẵn liên tiếp chia hết cho 8 thì bạn xem cái này nhé, không cần viết trong lời giải cũng được)
Tại sao 2 số nchẵn liên tiếp lại chia hết cho 8?
2k.(2k+2)= 4k(k+1) , vì k(k+1) là 2 số nguyên liên tiếp nên sẽ chia hết cho 2 nên 4k(k+1) chia hết cho 8.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
Ta có: \(a,b\)không chia hết cho \(3\)do đó \(a^2\equiv1\left(mod3\right),b^2\equiv1\left(mod3\right)\).
\(a^2-b^2=\left(a^2-1\right)-\left(b^2-1\right)\).
Ta sẽ chứng minh \(a^2-1⋮24\).
\(24=3.8,\left(3,8\right)=1\)do đó ta sẽ chứng minh \(a^2-1\)chia hết cho \(3\)và \(8\).
- \(a^2-1⋮3\)chứng minh trên.
\(a^2-1=\left(a-1\right)\left(a+1\right)\)là tích của hai số chẵn liên tiếp nên có một thừa số chia hết cho \(2\)(nhưng không chia hết cho \(4\)), một thừa số chia hết cho \(4\)do đó chia hết cho \(2.4=8\).
Tương tự với \(b^2-1\).
Do đó ta có đpcm.