Chứng minh rằng: 1/n3 > 1/n(n+1)(n+2) với n thuộc tập hợp z(n>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu nn chẵn thì cái tổng chia hết cho 2
Nếu nn lẻ thì
Phân tích nhân tử
Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)
Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được
Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1
Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )
BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3
Vậy, ta có điều phải chứng minh
Đúng thì
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n.27+3^n.3+2^n.8+2^n.4\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
Cho mik xin tk