cho :\(x\ge3\)tìm min \(x+\frac{1}{x}\) (cho hỏi có ai chơi bâng bang ko)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\overline{y,x}\Rightarrow\frac{x}{y}=\frac{yx}{10}\)
\(\Rightarrow10x=y^2x\Rightarrow10=y^2\)(chia cả hai vế cho x)
\(\Rightarrow\hept{\begin{cases}y=\sqrt{10}\\y=-\sqrt{10}\end{cases}}\)
Nếu như vậy thì x có vô số nghiệm nhé bạn vì khi thế vào sẽ như thế này
\(\frac{x}{\pm\sqrt{10}}=\frac{\pm\sqrt{10}x}{10}\)
\(\frac{x}{y}=\overline{y,x}\)
\(\Leftrightarrow\frac{x}{y}=\frac{xy}{10}\)
\(\Leftrightarrow10x=xy^2\)
\(\Leftrightarrow y^2=10\)
\(\Leftrightarrow y=\pm\sqrt{10}\)
Mà y là số có 1 chữ số ( Vì \(\overline{y,x}\) là số thập phân mà phần nguyên là y có 1 chữ số và phần thập phân là x cũng có 1 chữ số)
Vậy không có x, y thỏa mãn
Ta có:
\(P=\left(x-2\right)^2+\left(y-1\right)^2+\frac{\left(x-2\right)\left(4x-1\right)}{2x}+\frac{\left(x+y-3\right)\left(6x+6y-1\right)}{3\left(x+y\right)}+\frac{35}{6}\ge\frac{35}{6}\) (Sử dụng giả thiết)
Đẳng thức xảy ra khi x = 2; y = 1
Trần Thanh Phương, Nguyễn Văn Đạt, ?Amanda?, svtkvtm,
Lightning Farron, Lê Thảo, Nguyễn Thị Diễm Quỳnh,
@Akai Haruma, @Nguyễn Việt Lâm
\(\Rightarrow x^2+1=x^2+10x+25\)
\(\Rightarrow10x=-24\Rightarrow x=-2.4\)
Đk : xác dịnh với mọi x
pt <=> x^2 + 1 = x^2 + 10x + 25
=> 10x = -24
=> x= -12/5
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó
Trả lời :
\(\frac{7}{x}=4\Leftrightarrow x=1,75\)
Mk k chơi.
~Study well~
#SJ
toi choi bang bang ne ai toi cho nich cap 27 co picachu 5 chopper 5
Cho tui ních đó đi