K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

26 tháng 8 2020

Bài làm:

a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> đpcm

26 tháng 8 2020

a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1

                       = -( x2 - 4x + 4 ) - 1

                       = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

b) x4 + 3x2 + 3 ( * )

Đặt t = x2 

(*) <=> t2 + 3t + 3

     <=> ( t2 + 3t + 9/4 ) + 3/4

     <=> ( t + 3/2 )2 + 3/4

     <=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

10 tháng 7 2017

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

10 tháng 7 2017

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0 

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

14 tháng 9 2018

Ta có : \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)

\(=\left(x^2+2x+\dfrac{7}{2}-\dfrac{1}{2}\right)\left(x^2+2x+\dfrac{7}{2}+\dfrac{1}{2}\right)+3\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2-\dfrac{1}{4}+3\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\)

Do \(\left(x^2+2x+\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\)

\(\Rightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

\(\left(đpcm\right)\)

:D