Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
A = x2 - x + 1
A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)
A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
B = (x - 2)(x - 4) + 3
B = x2 - 4x - 2x + 8 + 3
B = x2 - 6x + 11
B = x2 - 2.3.x + 9 + 3
B = \(\left(x-3\right)^2+3>0\)
C = 2x2 - 4xy + 4y2 + 2x + 5
C = (x2 - 4xy + 4y2) + x2 + 2x + 5
C = (x - 2y)2 + (x2 + 2x + 1) + 4
C = (x - 2y)2 + (x + 1)2 + 4
Xét biểu thức C thấy :
Có 2 hạng tử không âm (vì là bình phương)
Vậy C > 0
Bài làm:
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> đpcm
a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1
= -( x2 - 4x + 4 ) - 1
= -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
b) x4 + 3x2 + 3 ( * )
Đặt t = x2
(*) <=> t2 + 3t + 3
<=> ( t2 + 3t + 9/4 ) + 3/4
<=> ( t + 3/2 )2 + 3/4
<=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
Ta có : \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)
\(=\left(x^2+2x+\dfrac{7}{2}-\dfrac{1}{2}\right)\left(x^2+2x+\dfrac{7}{2}+\dfrac{1}{2}\right)+3\)
\(=\left(x^2+2x+\dfrac{7}{2}\right)^2-\dfrac{1}{4}+3\)
\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\)
Do \(\left(x^2+2x+\dfrac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\)
\(\Rightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
\(\left(đpcm\right)\)
:D