K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

A B C D I E M O N F

LẤY I LÀ TRUNG ĐIỂM CỦA BC, O LÀ TRUNG ĐIỂM CỦA AC

XÉT TAM GIÁC MAN VÀ TAM GIÁC IOF CÓ

OI = AB/2=AE/2=AM

OF=AN ( CÚNG LÀ ĐƯƠNG CAO CỦA TAM GIÁC ĐỀU)

GÓC FOI = GÓC MAN = 90 + GÓC A

=> TAM GIÁC MAN = TAM GIACC IOF ( C.G.C)

=> FI = DM

=> GÓC OFI = GÓC MNA

=> GÓC MND = GÓC ANC - GÓC MNA - GÓC DNC

                     = 90 - GÓC OFI - GÓC IFC

                    = 90 - 30 = 60

LẠI CÓ FI = ND/2

           FI = MD

=> MD = ND/2

MÀ GÓC MND = 60

-> TAM GIÁC MND LÀ NỬ TAM GIÁC ĐỀU

=> DM VUÔNG GÓC DN

                   

7 tháng 10 2018

Hà Minh Hiếu Good !  

30 tháng 6 2018

A B C E F H N G

Trên nửa mặt phẳng bờ là NF, dựng tam giác đều NFG. Nối G với A và H.

Ta có: ^CFN + ^AFN = 600; ^AFG + ^AFN = 600 => ^CFN = ^AFG.

Xét \(\Delta\)NFC và \(\Delta\)GFA có: FC=FA;  ^CFN=^AFG; FN=FG => \(\Delta\)NFC = \(\Delta\)GFA (c.g.c)

=> CN=AG (2 cạnh tương ứng) . Mà CN=BN nên BN=AG.

Lại có: \(\Delta\)ABE là tam giác đều với trực tâm H => ^ABH=300

=> ^HBN = ^ABC + ^ABH = ^ABC +300 (1)

^HAG = 3600 - (^FAG + ^FAC + ^BAC + ^HAB) (*)

Do \(\Delta\)NFC=\(\Delta\)GFA => ^FAG = ^FCN (2 góc tương ứng) => ^FAG = ^ACB +600

Dễ thấy: \(\Delta\)ACF đều => ^FAC = 600;   \(\Delta\)ABE đều, trực tâm H => ^HAB = ^ABH = 300

Thay hết vào (*), ta được: ^HAG = 3600 - (^ACB + 600 + 600 + ^BAC + 300)

=> ^HAG = 2100 - (^BAC + ^ACB) = 1800 - (^BAC + ^ACB) +300 = ^ABC + 300

=> ^HAG = ^ABC + 300 (2)

Từ (1) và (2) => ^HBN = ^HAG. 

Xét \(\Delta\)BHN và \(\Delta\)AHG có: BH=AH (Dễ c/m); ^HBN = ^HAG; BN=AG (cmt)

=> \(\Delta\)BHN=\(\Delta\)AHG (c.g.c) => HN=HG (2 cạnh tương ứng).

Xét \(\Delta\)HNF và \(\Delta\)HGF: GN=HG; FN=FG; HF chung => \(\Delta\)HNF=\(\Delta\)HGF (c.c.c)

=> ^HFG = ^HFN = ^GFN/2 = 600/2 = 300; ^NHF = ^GHF

\(\Delta\)BHN=\(\Delta\)AHG => ^BHN = ^AHG . Mà ^BHN + ^NHA = ^BHA = 1200

=> ^AHG + ^NHA = ^NHG = 1200 => ^NHF = ^GHF = ^NHG/2 = 600

Vậy \(\Delta\)FNH có: ^HFN = 300; ^NHF = 600 =>  ^FNH = 900.

Còn 1 cách khác ở trong sách Nâng cao phát triển Toán 7 - T2 nhé!

Mình nghĩ thêm cách này để bạn tham khảo ^-^

30 tháng 6 2018

Cho cái link này không bít có đúng không:

https://cunghoctot.vn/forum/topic/1003161

Chia ra 3 trường hợp .....

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0