K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 7 2021

\(x^4+12x^2+29=y^2+y\)

\(\Leftrightarrow4x^4+48x^2+116=4y^2+4y\)

\(\Leftrightarrow\left(2x^2+12\right)^2-\left(2y+1\right)^2=27\)

\(\Leftrightarrow\left(2x^2-2y+11\right)\left(2x^2+2y+13\right)=27=1.27=3.9\)

Vì \(x,y\)đều là số nguyên nên \(2x^2-2y+11,2x^2+2y+13\)đều là các ước của \(27\).

Ta có bảng giá trị: 

2x^2-2y+11-27-9-3-113927
2x^2+2y+13-1-3-9-2727931
xvnvnvnvn1, -1vnvn1, -1
y    6  -7

Vậy phương trình có nghiệm là: \(\left(\pm1,6\right),\left(\pm1,-7\right)\).

12 tháng 1 2021

Có thể thay đề bài từ tìm nghiệm nguyên thành tìm nghiệm.

Ta có: \(x^2-10x+29=\left(x-5\right)^2+4\ge4>0;y^2+6y+14=\left(y+3\right)^2+5\ge5>0\).

Từ đó \(\left(x^2-10x+29\right)\left(y^2+6y+14\right)\ge4.5=20\).

Do đẳng thức xảy ra nên ta phải có: \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\).

Vậy...

12 tháng 3 2017

từ pt suy ra((x-5)^2+4)((y+3)^2+5)-20=0

((x-5)(y+3))^2+5(x-5)^2+4(y+3)^2+20-20=0

((x-5)(y+3)^2+5(x-5)^2+4(y+3)^2=0

suy ra x=5,y=-3

NV
8 tháng 1 2024

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\) 

AH
Akai Haruma
Giáo viên
21 tháng 8 2021

Bạn lưu ý chỉ đăng bài MỘT LẦN thôi chứ không đăng lặp lại gây loãng trang web.

AH
Akai Haruma
Giáo viên
21 tháng 8 2021

Lời giải:

a. Ta thấy:

$18x-30y=3(6x-10y)$ chia hết cho $3$ với mọi $x,y$ nguyên, mà $59$ không chia hết cho $3$

Do đó pt $18x-30y=59$ vô nghiệm.

b. $22x-5y=77$

$5y=22x-77=11(2x-7)\vdots 11$

$\Rightarrow y\vdots 11$. Đặt $y=11k$ với $k$ nguyên 

$22x-55k=77$

$2x-5k=7$

$2x=5k+7\vdots 2$

$\Rightarrow k$ lẻ. Đặt $k=2t+1$ với $t$ nguyên

$2x=5(2t+1)+7=10t+12$

$x=5t+6$

Vậy $(x,y)=(5t+6, 22t+11)$ với $t$ nguyên 

 

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2021

c.

$12x+19y=94$

$19y=94-12x\vdots 2\Rightarrow y\vdots 2$

Đặt $y=2k$ với $k$ nguyên. Khi đó:

$12x+38k=94$

$6x+19k=47$

$6k=47-19k=19(2-k)+9$

$\Rightarrow 6k-9\vdots 19$

$\Leftrightarrow 2k-3\vdots 19$

$\Leftrightarrow 2k-22\vdots 19$

$\Leftrightarrow k-11\vdots 19$

$\Rightarrow k=19t+11$ với $t$ nguyên

 \(x=\frac{47-19k}{6}=\frac{47-19(19t+11)}{6}=\frac{-162-361t}{6}=-27-\frac{361t}{6}\)

Để $x$ nguyên thì $t\vdots 6$. Khi đó đặt $t=6m$ với  $m$ nguyên 

Khi đó:

$y=2k=2(19t+11)=2(114m+11)=228m+22$

$x=-27-361m$ với $m$ nguyên bất kỳ.

21 tháng 2 2016

không có phương trình bạn nhé

ha

21 tháng 2 2016

bạn ơi, xem lại đề ra 1 chút, hình như có câu sai đề thì phải