Đường thẳng d qua M (4; 1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho tổng OA + OB nhỏ nhất. Viết phương trình đường thẳng d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)
b: Các tia gốc B là Bm,BD
Trục đối xứng của hình chữ nhật ABCD là MN,EF
Tâm đối xứng của hình chữ nhật ABCD là O
-Đường thẳng a là đường thẳng số 2
-Đường thẳng b là đường thẳng số 1
-Đường thẳng c là đường thẳng số 3
-Đường thẳng d là đường thẳng số 4
a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)
Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)
\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)
b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)
Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)
\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
a) Để đường thẳng (d) đi qua gốc tọa độ thì m + 1 = 0 => m = 1
Vậy m=1 thì đường thẳng (d) đi qua gốc tọa độ
b) Thay x = 3; y = 4 vào đường thẳng (d) ta được:
4 = (m + 1).3 - 2m + 1
<=> 3m + 3 -2m +1 - 4 = 0
<=> m = 0
Vậy m = 0 thì đường thẳng (d) đi qua điểm A(3;4)
Sorry vì mik ko vẽ được đồ thị cho bạn
c) Đường thẳng vừa vẽ được: y = x + 1
Phương trình hoành độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
x + 1 = -2x + 4
<=> x + 2x = 4 - 1
<=> 3x = 3
<=> x = 1
Tung độ của 2 đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
y = 1 + 1
<=> y = 2
Vậy tọa độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là (1;2)
Học tốt. Nhớ k cho mik nha.
Lời giải:
P/s: Làm nhưng k biết có đúng hay không!!! (^-^)
Gọi giao điểm mà đồ thị hàm số (y) cắt trục tung là A
Theo bài ra ta có hoành độ của A là 1
Vì A nằm trên trục tung nên hoành độ của A là 0
Do đó điểm A = ( 0 , 1 )
A thuộc đồ thị hàm số (y) nên: ⇒ (m+1)x -2m+1(d)\(\Rightarrow\)m = − 2
~Học tốt!~
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d // d’ nên a = − 2 b ≠ − 5 ⇒ d: y = − 2 x + b
Thay tọa độ điểm M vào phương trình đường thẳng d ta được:
− 2 . ( − 1 ) + b = 4 ⇒ b = 2 (thỏa mãn)
Vậy phương trình đường thẳng d: y = − 2 x + 2
Đáp án cần chọn là: C
a, kẻ đoạn AB bằng thước 4cm
gọi I là trung điểm AB , từ I kẻ đường thẳng d vuông góc vs AB , ta dc d là đường trung trực của AB
b, gọi M là điểm thuộc d , VẼ
c, Vì ta có AB vuông góc vs d mà a song song vs AB
suy ra a vuông góc vs đường thẳng d
Do d cắt 2 trục, gọi pt d có dạng: \(y=ax+b\) (\(a\ne0\))
d đi qua M nên: \(4a+b=1\Rightarrow b=-4a+1\Rightarrow y=ax-4a+1\)
Hoành độ A là nghiệm: \(ax_A-4a+1=0\Rightarrow x_A=\dfrac{4a-1}{a}\)
Tung độ B là nghiệm: \(y_A=a.0-4a+1=-4a+1\)
Do A; B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{4a-1}{a}>0\\-4a+1>0\end{matrix}\right.\) \(\Rightarrow a< 0\)
Khi đó ta có: \(\left\{{}\begin{matrix}OA=x_A=\dfrac{4a-1}{a}\\OB=y_A=-4a+1\end{matrix}\right.\)
\(S=OA+OB=\dfrac{4a-1}{a}-4a+1=5+\left(-4a+\dfrac{1}{-a}\right)\ge5+2\sqrt{\dfrac{-4a}{-a}}=9\)
\(S_{min}=9\) khi \(-4a=\dfrac{1}{-a}\Leftrightarrow a=-\dfrac{1}{2}\)
Phương trình d: \(y=-\dfrac{1}{2}x+3\)