Tìm giá trị nhỏ nhất của BT
\(Q=2x^2-3x+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y>0 với mọi x suy ra 2x^2y-xy+4y=x^2+2x+3>>>(2y-1)x^2-(y-2)x+(4y-3)=0(1)
Xét 2y-1=0 suy ra y=1/2 suy ra x=2/3(1)
Xét 2y-1 khác 0 pt trơ thành pt bậc 2 ẩn x suy ra delta=(y-2)^2-4(4y-3)(2y-1)>=0
suy ra 31y^2-36y+8<=0 rồi tìm được khoảng của y rồi so sánh với (1) là y=1/2 ta sẽ có GTLN và GTNN của y
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
Trả lời:
\(Q=2x^2-3x+5=2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)=2\left(x^2-2x\frac{3}{4}+\frac{9}{16}+\frac{31}{16}\right)=2\left[\left(x-\frac{3}{4}\right)^2+\frac{31}{16}\right]\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\)
Ta có: \(\left(x-\frac{3}{4}\right)^2\ge0\forall x\)
\(\Leftrightarrow2\left(x-\frac{3}{4}\right)^2\ge0\forall x\)
\(\Leftrightarrow2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy GTNN của Q = 31/8 khi x = 3/4