Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015
= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 + 2014
= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)
Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3
\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)
\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)
\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)
\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)
Vì \(\left(3x+2\right)^2\ge0\forall x\); \(\left(x-y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)
hay \(A\ge2014\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)
ta có A=x^2-2x+2015=(x-1)^2+2014
vì (x-1)^2>0 nên A=(x-1)^2+2014>2014
dấu bằng xảy ra<=>(x-1)^2=0<=>x=1
Vậy MinA =2014<=>x=1
còn lại bạn tự chứng minh nha
\(B=4x^2-2x-11=\left(2x\right)^2-2\times2x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-11\)
\(B=\left(2x-\frac{1}{2}\right)-\frac{1}{4}-11=\left(2x-\frac{1}{2}\right)-\frac{43}{4}\)
Vay GTNN cua Bla 43/4
khi 2x-1/2=0
2x=1/2
x=1/4
\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)
\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)
\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)
\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)
Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được