\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

14 tháng 3 2020

M= 4x^2 +20x+25+6x^2-8x-x^2-22

M= 9x^2+12x+3

M= (9x^2+12x+4)-1

M= (3x+2)^2 -1 > hoặc =-1

Vậy GTNN của M=-1 khi 3x+2=0 <=> x=-2/3

8 tháng 5 2018

\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x\right)^2-1+2017\)

\(=\left(2x^2-3x\right)^2+2016\ge2016\)

\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

8 tháng 5 2018

ai thấy mình làm đúng thì k cho mình nha!

24 tháng 6 2017

Phân thức đại số

17 tháng 2 2017

\(5\)

17 tháng 2 2017

Ta có: M= 4x^2 - 4x + 1 + x^2 + 4x + 4

              =   5x^2 + 5    >= 5

 Vậy MinA=5 đạt được khi x=0

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

31 tháng 7 2018

Đặt x2-2x+1=t, ta có:

\(A=\left(t-1\right)\left(t+1\right)=t^2-1=\left(x^2-2x+1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

31 tháng 7 2018

Đặt \(\left(x^2-2x\right)\left(x^2-2x=2\right)=k.\left(k+2\right)=A\)

\(\Rightarrow A=k.\left(k+2\right)=k^2+2k\)

\(\Rightarrow A=k^2+k+k+1-1=k\left(k+1\right)+\left(k+1\right)-1\)

\(\Rightarrow A=\left(k+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-2x+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-x-x+1\right)^2-1=\left[x.\left(x-1\right)-\left(x-1\right)\right]^2-1\)

\(\Rightarrow A=\left(x-1\right)^2-1\ge-1\)

( Dấu "=" xảy ra <=> x=1 )