CHO P= \(\sqrt{x^2+\sqrt[3]{x^4y^2}}\)+\(\sqrt{y^2+\sqrt[3]{x^2y^4}}\)
CMR \(\sqrt[3]{P^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt * \(\sqrt[3]{x^2}=m\Rightarrow x^2=m^3\)
* \(\sqrt[3]{y^2}=n\Rightarrow y^2=n^3\)
Áp dụng vào biểu thức trên, ta có:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)
\(\Rightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+n^2m}=a\left(1\right)\)
Bình phương 2 vế, ta được:
\(\left(1\right)\Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\)
\(\Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\)
\(\Leftrightarrow\left(m+n\right)^3=a^2\)
\(\Leftrightarrow m+n=\sqrt[3]{a^2}\)
\(\Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\left(đpcm\right)\)
(Chúc bạn học giỏi nha!)
\(a=\sqrt{\sqrt[3]{x^6}+\sqrt[3]{x^4y^2}}+\sqrt{\sqrt[3]{y^6}+\sqrt[3]{y^4x^2}}\)
\(=\sqrt{\sqrt[3]{x^4}\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)}+\sqrt{\sqrt[3]{y^4}\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)}\)
\(=\sqrt{\sqrt[3]{x^2}+\sqrt[3]{y^2}}\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)\)\(\Rightarrow a=\left(\sqrt{\sqrt[3]{x^2}+\sqrt[3]{y^2}}\right)^3\)
\(\Rightarrow\sqrt[3]{a^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2}=a\ge0\\\sqrt[3]{y^2}=b\ge0\end{matrix}\right.\)
\(P=\sqrt{a^3+a^2b}+\sqrt{b^3+ab^2}=\sqrt{a^2\left(a+b\right)}+\sqrt{b^2\left(a+b\right)}\)
\(=a\sqrt{a+b}+b\sqrt{a+b}=\left(a+b\right)\sqrt{a+b}\)
\(\Rightarrow P^2=\left(a+b\right)^2\left(a+b\right)=\left(a+b\right)^3\)
\(\Rightarrow\sqrt[3]{P^2}=a+b=\sqrt[3]{x^2}+\sqrt[3]{y^2}\) (đpcm)
Đặt \(m=\sqrt[3]{x^2}\)và \(n=\sqrt[3]{y^2}\)
=> m3 = x2 và n3 = y2
Ta có :\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)
=> \(\sqrt{m^3+\sqrt[3]{m^6n^3}}+\sqrt{n^3+\sqrt[3]{m^3n^6}}=a\)
=> \(\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\)
=> \(\sqrt{m^2\left(m+n\right)}+\sqrt{n^2\left(m+n\right)}=a\)
=> \(\sqrt{m+n}\left(m+n\right)=a\)
=> \(\left(\sqrt{m+n}\right)^3=\left(\sqrt[3]{a}\right)^3\)
=>\(\sqrt{m+n}=\sqrt[3]{a}\)
=> \(m+n=\left(\sqrt[3]{a}\right)^2\)
=> \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
bạn tham khảo cái này nhé https://olm.vn/hoi-dap/detail/54841261845.html
\(P=\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}\)
\(\Rightarrow P^2=x^2+\sqrt[3]{x^4y^2}+y^2+\sqrt[3]{x^2y^4}+2\sqrt{x^2+\sqrt[3]{x^4y^2}}.\sqrt{y^2+\sqrt[3]{x^2y^4}}\)
Xét: \(\sqrt{x^2+\sqrt[3]{x^4y^2}}.\sqrt{y^2+\sqrt[3]{x^2y^4}}=\sqrt{x^2y^2+x^2\sqrt[3]{x^2y^4}+y^2\sqrt[3]{x^4y^2}+\sqrt[3]{x^2y^4}.\sqrt[3]{x^4y^2}}\)
\(=\sqrt{\left(\sqrt[3]{x^4y^2}\right)^2+2x^2y^2+\left(\sqrt[3]{x^2y^4}\right)^2}=\sqrt{\left(\sqrt[3]{x^4y^2}+\sqrt[3]{x^2y^4}\right)^2}=\sqrt[3]{x^4y^2}+\sqrt[3]{x^2y^4}\)
Vậy \(P^2=x^2+3\sqrt[3]{x^4y^2}+3\sqrt[3]{x^2y^4}+y^2=\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)^3\Rightarrow\sqrt[3]{P^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)