cho hình thang ABCD vuông tại A và D , c =45 độ . Biết AD=4cm tính các cạnh đáy và diện tích của hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB+CD=35,28*2:4,2=16,8(m)
CD-AB=8,4
=>CD=(16,8+8,4)/2=12,6 và AB=4,2
b: AD=2/3DE
=>DA=2/3DE
=>EA=1/3DE
Xét ΔEDC và ΔEAB có
góc E chung
góc EDC=góc EAB
=>ΔEDC đồng dạng với ΔEAB
=>S EDC/S EAB=(DC/AB)^2=4
=>S EAB/S EDC=1/4
=>S EAB/S ABCD=1/3
=>S EAB=1/3*35,28=11,76(cm2)
Đổi:0.3m=30cm; 2dm=20cm
Độ dài đoạn thẳng DC la: 32+20=52(cm)
Diện tích hình thang ABCD là: (52+32)x30:2=1260(cm2)
Bài giải
Đổi : 32 cm = 0,32 m ; 2 dm = 0,2 m
Cạnh đáy DC dài là :
0,32 + 0,2 = 0,52 ( m )
Diện tích hình thang ABCD là :
( 0,52 + 0,32 ) x 0,3 : 2 = 0,126 ( m2 )
Đáp số : 0,126 m2
Giải
Đổi:
32cm = 0,32m
2dm = 0,2m
Độ dài đáy lớn là: DH + HC = AB + HC = 0,32 + 0,2 = 0,52 (m)
Vì: ABCD vuông ở A và D. Suy ra: AD là đường cao
Diện tích hình thang vuông ABCD là: (0,32 + 0,52) : 2 x 0,3 = 0,126 (m2)
Xét tam giác ABD và tam giác BDC có:
\(\widehat{BAD}=\widehat{DBC}=90^o\)
\(\widehat{ABD}=\widehat{BDC}\) (Cùng phụ với góc \(\widehat{ADC}\) )
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)
Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:
\(DB^2=AB^2+AD^2=2^2+4^2=20\)
Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)
Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)
Vậy chu vi hình thang vuông bằng: 2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)
Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)
độ dài cạnh DC là:
32+20=52(cm)
diện tích hình thang là:
(52+32)*30:2=1260(cm2)=0,126(m2)
Đáp số:0,126m2