K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

\(3269\equiv2\left(mod3\right)\)nên \(x^3+y^3+z^3\)chia cho \(3\)dư \(2\).

Với số nguyên \(a\)bất kì. 

Nếu \(a=3k\Rightarrow a^3⋮3\)

Nếu \(a=3k+1\Rightarrow a^3=\left(3k+1\right)^3\equiv1\left(mod3\right)\)

.Nếu \(a=3k+2\Rightarrow a^3=\left(3k+2\right)^3\equiv2\left(mod3\right)\)

Mà ta có \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Suy ra để \(x^3+y^3+z^3\)chia cho \(3\)dư \(2\)thì \(x+y+z\)chia cho \(3\)dư \(2\).

12 tháng 2 2019

Bài này à

12 tháng 2 2019

Gọi thương của phép chia là a thì ta có:

\(x^3+y^3+z^3=a\left(xyz\right)^2\)

Không mất tính tổng quát ta giả sử: \(x\ge y\ge z\)

Dễ thấy \(y^3+z^3⋮x^2\)

\(\Rightarrow y^3+z^3\ge x^2\left(1\right)\)

Ta lại có:

\(3x^3\ge x^3+y^3+z^3=a\left(xyz\right)^2\)

\(\Leftrightarrow3x\ge a\left(yz\right)^2\)

\(\Leftrightarrow9x^2\ge a^2y^4z^4\left(2\right)\)

Từ (1) và (2) suy ra

\(18y^3\ge9\left(y^3+z^3\right)\ge a^2y^4z^4\)

\(\Leftrightarrow z^5\le a^2yz^4\le18\)

\(\Leftrightarrow0< z\le1\)

\(\Leftrightarrow z=1\)

\(\Rightarrow a^2\le a^2y\le18\)

\(\Leftrightarrow1\le a\le4\)

Tự nhiên làm biếng quá thôi còn lại tự làm nốt nha bé.

28 tháng 7 2017

Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

Áp dụng vào bài

\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2

Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)

\(\Rightarrow2y+x+z=2k+2q+2\)

\(\Leftrightarrow x+z=2k+2q+2-2y\)

\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)

Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2

Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)

Vậy: \(A⋮6\forall x,y,z\in Z\)

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

5 tháng 9 2017

1.(x-y+z)2+(z-y)2+2(x-y+z)(y-z)= (x-y+z)+2(x-y+z)(y-z)+(y-z)2=(x-y+z+y-z)2=x2

CT : (A+B)2=A2+2AB+B2

5 tháng 9 2017

Ta có : A = 4x - x2 + 3

=> A = -(x2 - 4x - 3)

=> A = -(x2 - 4x + 4 - 7) 

=> A = -(x2 - 4x + 4) + 7

=> A = -(x - 2)2 + 7

Vì : \(-\left(x-2\right)^2\le0\forall x\) 

=>  A = -(x - 2)2 + 7 \(\le7\forall x\)

Vậy Amax = 7 khi x = 2

28 tháng 11 2016

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

28 tháng 11 2016

=720vix+y3=56vayx=720