Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
Áp dụng vào bài
\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2
Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)
\(\Rightarrow2y+x+z=2k+2q+2\)
\(\Leftrightarrow x+z=2k+2q+2-2y\)
\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)
Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2
Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)
\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)
Vậy: \(A⋮6\forall x,y,z\in Z\)

a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)
b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)
c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)
d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)
\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)
\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
a, Xét vế trái ta có:
(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1
=x^3+ (x^2- x^2)+(x-x)-1
=x^3-1
Vậy...
b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)
=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4
=x^4-y^4
Vậy ........
c, Xét vế trái ta có:
(x+y+z)^2=(x+y+z)(x+y+z)
=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2
=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz
Vậy...............
d, Xé vế trái ta có:
(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)
=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2
=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)
Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)
=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)
=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)
=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)
=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)
Từ (1) và (2)=>.......

Ta có: \(x+y+z=0\)
\(\Rightarrow\) \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(A=x\left(x+y\right)\left(x+z\right)=x\left(-z\right)\left(-y\right)=xyz\)
\(B=y\left(y+z\right)\left(y+x\right)=y\left(-x\right)\left(-z\right)=xyz\)
\(B=z\left(z+x\right)\left(y+z\right)=z\left(-y\right)\left(-x\right)=xyz\)
\(\Rightarrow A=B=C\)
Tham khảo nhé~

\(x^3+y^3+z^3=3xyz\)
⇔ \(\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz=0\)
⇔ \(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2-2xy+y^2+z^2-2xz+x^2+y^2-2yz+z^2\right)=0\) ⇔ \(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Do : x , y , z là ba số thực phân biệt , ta có :
\(x+y+z=0\)
⇔ \(x+y=-z;y+z=-x;x+z=-y\)
Khi đó , ta có : \(P=\dfrac{2016xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\dfrac{2016xyz}{-xyz}=-2016\)

b, \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left[\left(x-y\right)+\left(z-x\right)\right]+\left(z-x\right)^2\left(z-x\right)\)
\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left(x-y\right)-\left(y-z\right)^2\left(z-x\right)+\left(z-x\right)^2\left(z-x\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(y-z\right)^2\right]-\left(z-x\right)\left[\left(y-z\right)^2-\left(z-x\right)^2\right]\)
\(=\left(x-y\right)\left(x-y-y+z\right)\left(x-y+y-z\right)-\left(z-x\right)\left(y-z-z+x\right)\left(y-z+z-x\right)\)
\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(z-x\right)\left(y-2z+x\right)\left(y-x\right)\)
\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(x-z\right)\left(y-2z+x\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x-z\right)\left(x-2y+z-y+2z-x\right)\)
\(=\left(x-y\right)\left(x-z\right)\left(3z-3y\right)\)
\(=3\left(x-y\right)\left(x-z\right)\left(z-y\right)\)
c, \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)
\(=\left(x^2y^2-y^2z^2\right)\left(y-x\right)+\left(y^2z^2-z^2x^2\right)\left(z-x\right)\)
\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)+z^2\left(y-x\right)\left(x+y\right)\left(z-x\right)\)
\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)-z^2\left(y-x\right)\left(x+y\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(y-x\right)\left[y^2\left(x+z\right)-z^2\left(x+y\right)\right]\)
\(=\left(x-z\right)\left(y-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)
\(=\left(x-z\right)\left(y-x\right)\left[x\left(y^2-z^2\right)+yz\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(y-x\right)\left[x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(xy+xz+yz\right)\)
d, \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Tương tự bài 40 trong sách nâng cao và phát triển toán 8 tập 1 nhé
Bạn có thể xem đáp án tham khảo vì bài này nếu phân tích ra rất là dài
Hoặc bạn có thể dùng phương pháp đặt ẩn phụ nha trong sách mình vừa nói cũng có đó .

a, \(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)\(=x^2+2xy+y^2+2zx+2zy+z^2=x^2+y^2+z^2+2xy+2yz+2zx\)(đpcm)
b, \(\left(x+y+z\right)^3=\left(\left(x+y\right)+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+z\left(x+y+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

help me
Toshiro Kiyoshi30GP
Nguyễn Đình Dũng19GP
Nguyễn Huy Thắng17GP
Nguyễn Thanh Hằng16GP
Nguyễn Thị Hồng Nhung15GP
Rồng Đỏ Bảo Lửa11GP
Mysterious Person10GP
Đời về cơ bản là buồn... cười!!!8GP
Huy Thắng Nguyễn8GP
Ánh Dương Hoàng Vũ6GP
\(3269\equiv2\left(mod3\right)\)nên \(x^3+y^3+z^3\)chia cho \(3\)dư \(2\).
Với số nguyên \(a\)bất kì.
Nếu \(a=3k\Rightarrow a^3⋮3\)
Nếu \(a=3k+1\Rightarrow a^3=\left(3k+1\right)^3\equiv1\left(mod3\right)\)
.Nếu \(a=3k+2\Rightarrow a^3=\left(3k+2\right)^3\equiv2\left(mod3\right)\)
Mà ta có \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Suy ra để \(x^3+y^3+z^3\)chia cho \(3\)dư \(2\)thì \(x+y+z\)chia cho \(3\)dư \(2\).