1. tính :
\(512.\left(0,25\right)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{7}\right)^7\cdot7^7=\left(\dfrac{1}{7}\cdot7\right)^7=1^7=1\\ \left(0,125\right)^3\cdot512=\left(0,125\right)^3\cdot8^3=\left(0,125\cdot8\right)^3=1^3=1\\ \left(0,25\right)^4\cdot1024=\left(0,25\right)^4\cdot256\cdot4=\left(0,25\right)^4\cdot4^4\cdot4=\left(0,25\cdot4\right)^4\cdot4=1^4\cdot4=4\)
a) \(\left(\dfrac{1}{7}\right)^7.7^7=\left(\dfrac{1}{7}.7\right)^7=1^7=1\)
b) \(\left(0.125\right)^3.512=\left(0.125\right)^3.8^3=\left(0.125\cdot8\right)^3=1^3=1\)
c) \(\left(0.25\right)^4.1024=\left(0.25\right)^4.4^5=\left(0.25\right)^4.4^4.4=\left(0.25.4\right)^4.4=1^4.4=1.4=4\)
\(\text{Xét công thức tổng quát }:x^4+\frac{1}{4}=\left(x^4+2.x^2.\frac{1}{2}+\frac{1}{4}\right)-x^2\)
\(=\left(x^2+\frac{1}{2}\right)^2-x^2=\left(x^2-x+\frac{1}{2}\right)\left(x^2+x+\frac{1}{2}\right)\)
Áp dụng vào B ta đc:
\(B=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(12^4+\frac{1}{4}\right)}\)
\(=\frac{\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)...\left(11^2-11+\frac{1}{2}\right)\left(11^2+11+\frac{1}{2}\right)}{\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)...\left(12^2-12+\frac{1}{2}\right)\left(12^2+12+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(122+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(122+\frac{1}{2}\right)}{\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}=\frac{49}{16589}\)
ko biết có đúng ko!! hình như còn 1 cách là nhân 1 đa thức với 16 nữa thì phải lâu ko động đến bạn thử xem đc ko nhé
\(A=\left(0,25\right)^{-1}.\left(\frac{1}{4}\right)^{-2}.\left(\frac{4}{3}\right)^2.\left(\frac{5}{4}\right)^{-1}.\left(\frac{2}{3}\right)^{-3}\)
\(\Rightarrow A=4^1.4^2.\frac{16}{9}.\frac{4}{5}\frac{27}{8}\)
\(\Rightarrow A=\frac{64}{1}.\frac{16}{9}.\frac{4}{5}.\frac{27}{8}\)
\(\Rightarrow A=\frac{1536}{5}\)
Vậy \(A=\frac{1536}{5}\)
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19\left(-3\right)^{-3}=\left(2^{-1}\right)^{-4}-\left(5^4\right)^{\frac{1}{4}}-\left[\left(\frac{3}{2}\right)^2\right]^{-\frac{3}{2}}+19.\frac{1}{\left(-3\right)^3}\)
\(=2^4-5-\left(\frac{3}{2}\right)^{-3}-\frac{19}{27}\)
\(=11-\left(\frac{2}{3}\right)^3-\frac{19}{27}=10\)
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19.\left(-3\right)^{-3}\)
\(=\left(\frac{1}{2}\right)^{-4}-625^{\frac{1}{4}}-\left(\frac{9}{4}\right)^{-\frac{3}{2}}+19.\left(-3\right)^{-3}\)
\(=2^4-\sqrt[4]{625}-\left(\frac{4}{9}\right)^{\frac{3}{2}}+19.\left(\frac{1}{\left(-3\right)^3}\right)\)
=\(16-5-\sqrt[2]{\left(\frac{4}{9}\right)^3}+19.\frac{1}{-27}=11-\frac{8}{27}-\frac{19}{27}=10\)
`1//([-1]/2)^2 . |+8|-(-1/2)^3:|-1/16|=1/4 .8+1/8 .16=2+2=4`
`2//|-0,25|-(-3/2)^2:1/4+3/4 .2017^0=0,25-2,25.4+0,75.1=0,25-9+0,75=-8,75+0,75-8`
`3//|2/3-5/6|.(3,6:2 2/5)^3=|-1/6|.(3/2)^3=1/6 . 27/8=9/16`
`4//|(-0,5)^2+7/2|.10-(29/30-7/15):(-2017/2018)^0=|1/4+7/2|.10-1/2:1=|15/4|.10-1/2=15/4 .10-1/2=75/2-1/2=37`
`5// 8/3+(3-1/2)^2-|[-7]/3|=8/3+(5/2)^2-7/3=8/3+25/4-7/3=107/12-7/3=79/12`
\(\text{A=}\left(\dfrac{7}{8}-0,25\right):\left(\dfrac{5}{6}-0,75\right)^2\)
\(A=\left(\dfrac{7}{8}-\dfrac{1}{4}\right):\left(\dfrac{5}{6}-\dfrac{3}{4}\right)^2\)
\(A=\left(\dfrac{7}{8}+\dfrac{-1}{4}\right):\dfrac{1}{144}\)
\(A=\dfrac{5}{8}.144=90\)
\(\text{B=}\dfrac{3}{4}.1\dfrac{4}{9}-\left(\dfrac{-3}{4}\right)\)
\(B=\dfrac{3}{4}.\dfrac{13}{9}+\dfrac{3}{4}\)
\(B=\dfrac{13}{12}+\dfrac{3}{4}\)
\(B=\dfrac{11}{6}\)
512.(0,25)4= 2