cho tam giác MNP vuông tại M, MN=30cm,tan N=\(\frac{8}{15}\)
a,tính MP,NP b, tính tỷ số lượng giác còn lại góc N
giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C
a: NP=10(cm)
\(\widehat{P}=37^0\)
\(\widehat{N}=53^0\)
a, \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
\(\sin N=\dfrac{MP}{NP}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{N}\approx53^0\\ \widehat{P}=90^0-\widehat{N}\approx37^0\)
b, \(\dfrac{NE}{PE}=\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow NE=\dfrac{3}{4}PE\)
\(NE+PE=NP=10\Rightarrow\dfrac{7}{4}PE=10\Rightarrow\left\{{}\begin{matrix}PE=\dfrac{40}{7}\left(cm\right)\\NE=\dfrac{30}{7}\left(cm\right)\end{matrix}\right.\)
a: NP=10cm
C=MN+MP+NP=24(cm)
b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có
NK chung
\(\widehat{MNK}=\widehat{ENK}\)
Do đó: ΔMNK=ΔENK
c: Ta có: MK=EK
mà EK<KP
nên MK<KP
a: NP=căn 8^2+15^2=17cm
MK=8*15/17=120/17cm
b: góc MEK=góc MFK=góc FME=90 độ
=>MEKF là hình chữ nhật
=>MK=EF=120/17cm
c: ΔMKN vuông tại K có KE là đường cao
nên ME*MN=MK^2
ΔMKP vuông tại K có KF là đường cao
nên MF*MP=MK^2
=>ME*MN=MF*MP
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
ta có
\(tanN=\frac{MP}{MN}=\frac{MP}{30}\Rightarrow MP=30tanN=16cm\)
theo pytago ta có : \(NP=\sqrt{30^2+16^2}=34cm\)
ta có \(sinN=\frac{MP}{NP}=\frac{16}{34}=\frac{8}{17}\)
\(cosN=\frac{MN}{NP}=\frac{30}{34}=\frac{15}{17}\) và \(cotN=\frac{1}{tanN}=\frac{15}{8}\)