K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
18 tháng 7 2021

ta có 

\(tanN=\frac{MP}{MN}=\frac{MP}{30}\Rightarrow MP=30tanN=16cm\)

theo pytago ta có : \(NP=\sqrt{30^2+16^2}=34cm\)

ta có \(sinN=\frac{MP}{NP}=\frac{16}{34}=\frac{8}{17}\)

\(cosN=\frac{MN}{NP}=\frac{30}{34}=\frac{15}{17}\) và \(cotN=\frac{1}{tanN}=\frac{15}{8}\)

2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C

Tỉ số lượng giác của góc nhọn

29 tháng 10 2021

a: NP=10(cm)

\(\widehat{P}=37^0\)

\(\widehat{N}=53^0\)

29 tháng 10 2021

a, \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

\(\sin N=\dfrac{MP}{NP}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{N}\approx53^0\\ \widehat{P}=90^0-\widehat{N}\approx37^0\)

b, \(\dfrac{NE}{PE}=\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow NE=\dfrac{3}{4}PE\)

\(NE+PE=NP=10\Rightarrow\dfrac{7}{4}PE=10\Rightarrow\left\{{}\begin{matrix}PE=\dfrac{40}{7}\left(cm\right)\\NE=\dfrac{30}{7}\left(cm\right)\end{matrix}\right.\)

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

a: ΔPIM vuông tại I

=>IP^2+IM^2=MP^2

=>IM^2=10^2-6^2=64

=>IM=8(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên PI*PN=PM^2

=>PN=10^2/6=50/3(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên MI^2=IN*IP

=>IN=8^2/6=32/3(cm)

Xét ΔMNP vuông tại M có sin MNP=MP/PN

=10:50/3=3/5

=>góc MNP=37 độ

b: C=MN+NP+MP

=10+40/3+50/3

=10+90/3

=10+30

=40(cm)

c: Xét ΔIMP vuông tại I có IK là đường cao

nên IK*PM=IP*IM

=>IK*10=6*8=48

=>IK=4,8(cm)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP^2=3^2-\left(\sqrt{5}\right)^2=4\)

hay MP=2cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MN^2=NK\cdot NP\\MK\cdot NP=MN\cdot MP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}KN=\dfrac{5}{9}\left(cm\right)\\MK=\dfrac{2\sqrt{5}}{3}\left(cm\right)\end{matrix}\right.\)

Xét ΔNMK vuông tại K có 

\(\sin\widehat{NMK}=\dfrac{KN}{MN}=\dfrac{\sqrt{5}}{9}\)

\(\cos\widehat{NMK}=\dfrac{MK}{MN}=\dfrac{2}{3}\)

\(\tan\widehat{NMK}=\dfrac{KN}{KM}=\dfrac{\sqrt{5}}{6}\)

\(\cot\widehat{NMK}=\dfrac{KM}{KN}=\dfrac{6\sqrt{5}}{5}\)

8 tháng 11 2023

Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:

\(MN^2+MP^2=NP^2\)

Thay số: \(7^2+MP^2=25^2\)

\(\Rightarrow MP=24\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:

\(MK.NP=MN.MP\)

Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)

Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:

\(MK^2+NK^2=MN^2\)

Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)

8 tháng 11 2023

thanks bn