Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
a: góc NAP=góc NBP=90 độ
=>PA vuông góc MN và NB vuông góc MB
Xét ΔMNP có
NB,PA là đường cao
NB cắt PA tại H
=>H là trực tâm
=>MH vuông góc NP tại I
Xét ΔHAN vuông tại A và ΔHBP vuông tại B có
góc AHN=góc BHP
=>ΔHAN đồng dạng với ΔHBP
b: góc HIP+góc HBP=180 độ
=>HIPB nội tiếp
c: góc BAH=góc IMP
góc IAH=góc BNP
mà góc IMP=góc BNP
nên góc BAH=góc IAH
=>AH là phân giác của góc BAI
góc ABH=góc NMI
góc IBH=góc APN
mà góc NMI=góc APN
nên góc ABH=góc IBH
=>BH là phân giác của góc ABI