K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2022

a/

Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp

Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp

b/ Xét tg MEB và tg MCF có

\(\widehat{EMC}\) chung

\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)

=> tg MEB đồng dạng với tg MCF (g.g.g)

\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)

 

 

 

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{EFB}+\widehat{ECB}=180^0\)

mà \(\widehat{EFB}+\widehat{MFB}=180^0\)(hai góc kề bù)

nên \(\widehat{MFB}=\widehat{MCE}\)

Xét ΔMFB và ΔMCE có

\(\widehat{MFB}=\widehat{MCE}\)

\(\widehat{M}\) chung

Do đó: ΔMFB~ΔMCE
=>\(\dfrac{MF}{MC}=\dfrac{MB}{ME}\)

=>\(MF\cdot ME=MB\cdot MC\)

11 tháng 4 2016

d, từ C kẻ đường thẳng // với PM cắt AE,AB tại Q và K 

lấy H là trung điểm của BC

=>OH vuông góc với BC

H và E cùng nhìn OP dưới 1 góc 90 =>tứ giác OHEP nội tiếp =>góc MPH = góc OEH mà góc MPH = góc KCH (PM//CK) =>góc KCH= góc OEH =>tứ giác HQCE nội tiếp =>góc QHC = góc AEC mà góc AEC = góc ABC =>góc QHC=góc ABC =>QH//AB mà H là trung điểm BC

=>Q là trung điểm CK 

Áp dụng định lí TA-let ta được tam giác AMO đồng dạng tam giác AKQ =>MO/KQ=AO/AQ 

cmtt NO/CQ=AO/AQ mà CQ=KQ =>OM=ON