Tìm tất cả các số nguyên a,b,c thỏa mãn a+b+c=\(a^3+b^3+c^3-3abc\)=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\) \(\left(a;b;c\in R\right)\)
Ta có :
\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)
Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được
\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)
\(3^x=y^2+2y\left(x;y>0\right)\)
\(\Leftrightarrow3^x+1=y^2+2y+1\)
\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)
- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)
- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)
- Với \(x>1;y>1\)
\(\left(y+1\right)^2\) là 1 số chính phương
\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương
\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^2-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b\right)-3\left(a+b\right).c\left(a+b+c\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3\left(a+b\right).c\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ab-3ab-3bc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Ta có:
\(a;b;c>0\)
\(\Rightarrow a+b+c>0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
\(A=2020\left(1-\dfrac{a}{b}\right)\left(1-\dfrac{b}{c}\right)\left(1-\dfrac{c}{a}\right)-2021\left(\dfrac{a}{b}-\dfrac{b}{c}+\dfrac{c}{a}\right)^3\)
\(\Rightarrow A=2020.\left(1-1\right)\left(1-1\right)\left(1-1\right)-2021\left(1-1+1\right)^3\)
\(\Rightarrow A=-2021\).
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Ta có: \(a+b+c=\dfrac{3}{a}+\dfrac{4}{b}+\dfrac{9}{c}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=3\\b^2=4\\c^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\in\left\{\sqrt{3};-\sqrt{3}\right\}\\b\in\left\{2;-2\right\}\\c\in\left\{3;-3\right\}\end{matrix}\right.\)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=2\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=2\)(1)
Mà \(a,b,c\)là các số nguyên nên (1) chỉ xảy ra khi \(2\)trong \(3\)số \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\)có giá trị bằng \(1\), số còn lại có giá trị bằng \(0\).
Không mất tính tổng quát, giả sử \(\hept{\begin{cases}\left(a-b\right)^2=1\\\left(b-c\right)^2=1\\\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow a=c=1,b=0\)(vì \(a+b+c=2\)).
Vậy nghiệm của hệ phương trình đã cho là \(\left(1,0,1\right)\)và các hoán vị.