K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2021

giải giúp con mình nhé. Xin cám ơn

 

9 tháng 3 2022

bạn ơi còn cái hình nữa bạn 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)

23 tháng 11 2023

a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)

nên ΔBEM vuông cân tại M

b: ME\(\perp\)BC

NF\(\perp\)BC

Do đó: ME//NF

Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)

nên ΔCNF vuông cân tại N

=>CN=NF

CN=NF

BM=ME

CN=NM=MB

Do đó: CN=NF=BM=ME=NM

Xét tứ giác NMEF có

NF//ME

NF=ME

Do đó: NMEF là hình bình hành

Hình bình hành NMEF có NM=NF

nên NMEF là hình thoi

Hình thoi NMEF có \(\widehat{FNM}=90^0\)

nên NMEF là hình vuông

31 tháng 8 2023

Trước tiên, ta có BM = BC theo đề bài. Vì tam giác ABC vuông tại A, nên ta có góc BAC = 90 độ.

Tiếp theo, ta biết rằng phân giác tam giác ABC cắt AC tại K. Vì vậy, ta có góc BAK = góc CAK.

Tương tự, phân giác tam giác ABC cắt MC tại I, nên ta có góc BAM = góc CAM.

Vì CN = MA, nên ta có góc CAN = góc CMA.

Từ các quan sát trên, ta có thể thấy rằng góc BAK = góc BAM = góc CAN = góc CMA.

Vì vậy, ta có thể kết luận rằng K, M, N thẳng hàng.

BN+NC=BC

BA+AM=BM

mà BC=BM và NC=AM

nên BN=BA

Xét ΔBAK và ΔBNK có

BA=BN

góc ABK=góc NBK

BK chung

Do đó: ΔBAK=ΔBNK

=>góc BNK=90 độ và KA=KN

Xét ΔKAM vuông tại A và ΔKNC vuông tại N có

KA=KN

AM=NC

Do đó; ΔKAM=ΔKNC

=>góc AKM=góc NKC

=>góc AKM+góc AKN=180 độ

=>K,M,N thẳng hàng

6 tháng 8 2023

*lâu r ms lm hình:DD*

+,Có `BK` là p/g `=>hat(B_1)=hat(B_2)`

Có `BM=BC` và `AM=NC` (\(gt\))

`=>BM-AM=BC-NC`

hay `BA=BN`

Xét `Delta ABK` và `Delta NBK` có :

`{:(BK-chung),(hat(B_1)=hat(B_2)(cmt)),(BA=BN(cmt)):}}`

`=>Delta ABK = Delta NBK(c.g.c)`

`=>{(hat(A_1)=hat(N_1)(tương.ứng)(1)),(AK=NK(tương.ứng)):}`

+, Từ `(1)` ; `hat(A_1)+hat(A_2)=180^0` (kề bù) ; `hat(N_1)+hat(N_2)=180^0` (kề bù)

`=>hat(A_2)=hat(N_2)`

Xét `Delta AKM` và `Delta NKC` có :

`{:(AK=NK(cmt)),(hat(A_2)=hat(N_2)(cmt)),(AM=NC(Gt)):}}`

`=>Delta AKM=Delta NKC (c.g.c)`

`=>hat(K_1)=hat(K_2)` ( 2 góc tương ứng )

`=>hat(K_1)+hat(AKN)=hat(K_2)+hat(AKN)`

hay `hat(MKN)=hat(CKA)`

mà `hat(CKA)=180^0` (`K in AC` )

Nên `hat(MKN)=180^0`

`=>M ;  K ; N` thẳng hàng 

Hình :

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)