Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý thôi cx được nhưng mà gợi ý theo kiểu chi tiết nhé , đừng bảo là kẻ cái này cái nọ rồi tự giải thì mik chịu :D
tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB <=> MN//BA
tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật
MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB
=> tg là hình vuông(dhnb)
lần sau vẽ hình nha! làm bài đã dài r lại còn phải vẽ hình nữa :(
Để chứng minh PCQM là hình chữ nhật, ta cần chứng minh 4 đỉnh P,, Q, M đều thuộc một đường thẳng và đường thẳng đó vuông góc với cả hai đường PQ và CM.Ta sẽ chứng minh từng bước như sau:Bước 1: Chứng minh P, C, Q thẳng hàngVì tam giác ABC vuông cân tại C và BM song song với BC, nên theo thuộc tính tam giác vuông cân và tam giác đồng dạng:- Ta có AC = BC (tam giác vuông cân)- Ta có BM || BC (theo giả thiết)- Ta có ∠ABC = ∠BAC (tam giác vuông cân)Do đó, tam giác ABC đồng dạng với tam giác BPC (theo góc). Từ đó, ta có:∠BPC = ∠ACB = 90° - ∠ABC = 90° - ∠BAC = ∠BCA (do tam giác vuông cân)Vậy ta có P, C,
a: Xét tứ giác ABMI có
MI//AB
MI=AB
Do đó; ABMI là hình bình hành
Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hìnhchữ nhật
b: \(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{32}=4\sqrt{2}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot4\sqrt{2}\cdot4\sqrt{2}=2\sqrt{2}\cdot4\sqrt{2}=16\left(cm^2\right)\)
c: A đối xứng D qua BC
nên CA=CD
=>CD=AB
a/
(gt)
=> ME//AF
=> MF//AE
=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
=> AEMF là HCN (hbh có 1 góc vuông là HCN)
b/
Ta có
MF
Xét tg vuông ABC có
MB=MC (gt); MF//AE => MF//AB
=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
MF=IF (gt)
=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Ta có
=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)
c/
Ta có
AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang
Xét tứ giác ABMI có
AI//BC (cmt) => AI//BM
MF//AB (cmt) => MI//AB
=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Để ABCI là hình thang cân => AB=CI (1)
Ta có
AB=MI (cạnh đối hình bình hành ABMI) (2)
AM=CI (cạnh đối hình thoi AMCI) (3)
Từ (1) (2) (3) => AB=AM=MI=CI
Xét tg vuông ABC có
BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> AB=AM=BM => tg ABM là tg đều
Để ABCI là hình thang cân thì tg vuông ABC có
d/
Xét tứ giác ADBM có
DE=ME (gt)
AE=BE (gt)
=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AD//BM (cạnh đối hbh) => AD//BC
Ta có
AI//CM (cạnh đối hình thoi AMCI)
=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
Ta có
AD=BM (cạnh đối hbh ADBM)
AI=CM (cạnh đối hình thoi AMCI)
BM=CM (gt)
=> AD=AI => A là trung điểm DI
chúc bạn học tốt
a) Xét ΔABD và ΔACD có
AB=AC(ΔBAC cân tại A)
AD chung
BD=CD(D là trung điểm của BC)
Do đó: ΔABD=ΔACD(c-c-c)
Suy ra: \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
hay AD là tia phân giác của \(\widehat{BAC}\)
b) Xét ΔAMD và ΔAND có
AM=AN(gt)
\(\widehat{MAD}=\widehat{NAD}\)(cmt)
AD chung
Do đó: ΔAMD=ΔAND(c-g-c)
Suy ra: \(\widehat{AMD}=\widehat{AND}\)(hai góc tương ứng)
hay DN\(\perp\)AC
a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)
nên ΔBEM vuông cân tại M
b: ME\(\perp\)BC
NF\(\perp\)BC
Do đó: ME//NF
Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)
nên ΔCNF vuông cân tại N
=>CN=NF
CN=NF
BM=ME
CN=NM=MB
Do đó: CN=NF=BM=ME=NM
Xét tứ giác NMEF có
NF//ME
NF=ME
Do đó: NMEF là hình bình hành
Hình bình hành NMEF có NM=NF
nên NMEF là hình thoi
Hình thoi NMEF có \(\widehat{FNM}=90^0\)
nên NMEF là hình vuông